|
|
|
|
|
|
Comparative study of popular remote sensing teaching and research software for land use classification in a complex mine scene |
ZHANG Chengye1,2( ), LI Mengyuan1, XING Jianghe1( ), QIU Yuhang1 |
1. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China 2. State Key Laboratory of Coal Fine Exploration and Intelligent Development, China University of Mining and Technology (Beijing), Beijing 100083, China |
|
|
Abstract The performance of remote sensing image processing software directly influences the effectiveness and efficiency of teaching and research activities conducted by related workers. Focusing on land use classification in a complex mine scene, this study comparatively investigated the performance of popular remote sensing software including Pixel Information Expert (PIE), Environment for Visualizing Images (ENVI), ERDAS IMAGINE (ERDAS), and eCognition Developer (eCognition), and the self-developed deep learning algorithm. The results show that ENVI yielded the highest overall accuracy (OA) and Kappa coefficient but the lowest classification efficiency in conventional pixel-oriented classification. In contrast, ERDAS exhibited the highest operational efficiency while maintaining relatively high accuracy. eCognition achieved the optimal OA and Kappa coefficient and relatively high operational efficiency in conventional object-oriented classification. The deep convolutional neural network algorithm demonstrated superior accuracy over the classification results of conventional methods. Overall, this study quantitatively revealed the performance of various software on different strategies and methods, providing a scientific basis for related workers to choose appropriate image processing software and improve teaching effect and research efficiency.
|
Keywords
remote sensing software
complex mine
land use classification
teaching and research
neural network
|
|
Issue Date: 01 July 2025
|
|
|
[1] |
刘东升, 廖通逵, 孙焕英, 等. 中国遥感软件研制进展与发展方向——以像素专家PIE为例[J]. 中国图象图形学报, 2021, 26(5):1169-1178.
|
[1] |
Liu D S, Liao T K, Sun H Y, et al. Research progress and development direction of Chinese remote sensing software:Taking PIE as an example[J]. Journal of Image and Graphics, 2021, 26(5):1169-1178.
|
[2] |
Chen C, Li W, Gao L R, et al. Special issue on advances in real-time image processing for remote sensing[J]. Journal of Real-Time Image Processing, 2018, 15(3):435-438.
|
[3] |
闫琰, 董秀兰, 李燕. 基于ENVI的遥感图像监督分类方法比较研究[J]. 北京测绘, 2011, 25(3):14-16.
|
[3] |
Yan Y, Dong X L, Li Y. The comparative study of remote sensing image supervised classification methods based on ENVI[J]. Beijing Surveying and Mapping, 2011, 25(3):14-16.
|
[4] |
Mekonnen Y A, Manderso T M. Land use/land cover change impact on streamflow using Arc-SWAT model,in case of Fetamwatershed,AbbayBasin,Ethiopia[J]. Applied Water Science, 2023, 13(5):111.
|
[5] |
郝容, 屈鸿钧, 文学虎. eCognition(易康)软件在地理国情普查地表覆盖解译中的应用[J]. 测绘通报, 2014(4):134-135.
|
[5] |
Hao R, Qu H J, Wen X H. The application of eCognition software in the interpretation of land cover in geographical national survey[J]. Bulletin of Surveying and Mapping, 2014(4):134-135.
|
[6] |
张成业, 李军, 赵恒谦, 等. PIE系列遥感软件在测绘类专业体验式教学中的应用[J]. 北京测绘, 2023, 37(9):1320-1325.
|
[6] |
Zhang C Y, Li J, Zhao H Q, et al. The application of PIE remote sensing software in experiential teaching of surveying and mapping[J]. Beijing Surveying and Mapping, 2023, 37(9):1320-1325.
|
[7] |
张成业, 李飞跃, 李军, 等. 基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类[J]. 煤田地质与勘探, 2022, 50(6):94-103.
|
[7] |
Zhang C Y, Li F Y, Li J, et al. Recognition of land use on open-pit coal mining area based on DeepLabv3+ and GF-2 high-resolution images[J]. Coal Geology and Exploration, 2022, 50(6):94-103.
|
[8] |
张成业, 邢江河, 李军, 等. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
|
[8] |
Zhang C Y, Xing J H, Li J, et al. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
|
[9] |
桑潇, 张成业, 李军, 等. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3):148-155.doi:10.6046/zrzyyg.2020358.
|
[9] |
Sang X, Zhang C Y, Li J, et al. Application of intensity analysis theory in the land use change in YijinHolo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3):148-155.doi:10.6046/zrzyyg.2020358.
|
[10] |
陈蕊, 张继超. 基于eCognition的遥感图像面向对象分类方法研究[J]. 测绘与空间地理信息, 2020, 43(2):91-95.
|
[10] |
Chen R, Zhang J C. Study on object-oriented classification method of remote sensing image based on eCognition[J]. Geomatics and Spatial Information Technology, 2020, 43(2):91-95.
|
[11] |
王海芹, 杨燕, 汪生燕. 国外四大遥感软件影像分类过程及效果比较[J]. 地理空间信息, 2009, 7(5):153-155.
|
[11] |
Wang H Q, Yang Y, Wang S Y. Comparisons of classification processes and results of 4 kinds of foreign remote sensing image[J]. Geospatial Information, 2009, 7(5):153-155.
|
[12] |
陈理, 张仙, 李伟, 等. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4):55-61.doi:10.6046/zrzyyg.2023182.
|
[12] |
Chen L, Zhang X, Li W, et al. Hierarchical multi-scale segmentation-based information extraction and dynamic change monitoring in TagaungTaung nickel deposit,Myanmar[J]. Remote Sensing for Natural Resources, 2024, 36(4):55-61.doi:10.6046/zrzyyg.2023182.
|
[13] |
邵亚琴, 王佳佳, 银玉霞. 基于ENVI软件对忻州窑矿土地类型识别及精度评价[J]. 内蒙古科技大学学报, 2022, 41(1):66-75.
|
[13] |
Shao Y Q, Wang J J, Yin Y X. Recognition of land features and accuracy evaluation of Xinzhouyao mine based on ENVI software[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(1):66-75.
|
[14] |
郄晨龙, 卞正富, 杨德军, 等. 鄂尔多斯煤田高强度井工煤矿开采对土壤物理性质的扰动[J]. 煤炭学报, 2015, 40(6):1448-1456.
|
[14] |
Qie C L, Bian Z F, Yang D J, et al. Effect of high-intensity underground coal mining disturbance on soil physical properties[J]. Journal of China Coal Society, 2015, 40(6):1448-1456.
|
[15] |
Zhang C, Xing J, Li J, et al. A new method for the extraction of tailing ponds from very high-resolution remotely sensed images:PSVED[J]. International Journal of Digital Earth, 2023, 16(1):2681-2703.
|
[16] |
Zhang X, Fu S, Hu Z, et al. Changes detection and object-oriented classification of major wetland cover types in response to driving forces in ZoigeCounty,Eastern Qinghai-Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:9297-9305.
|
[17] |
Shpak A V. Comparative analysis of supervised methods for the classification of mountain forests based on space imagery from the satellite RapidEye[J]. Astronomical School’s Report, 2012, 8(2):212-215.
|
[18] |
Mustafa A, Szydłowski M. The impact of spatiotemporal changes in land development (1984—2019) on the increase in the runoff coefficient in erbil,Kurdistan region of Iraq[J]. Remote Sensing,2020, 12(8):1302.
|
[19] |
Xi Y, Ren C, Tian Q, et al. Exploitation of time series Sentinel-2 data and different machine learning algorithms for detailed tree species classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:7589-7603.
|
[20] |
Madhuanand L, Sadavarte P, Visschedijk A J H, et al. Deep convolutional neural networks for surface coal mines determination from Sentinel-2 images[J]. European Journal of Remote Sensing, 2021, 54(1):296-309.
doi: 10.1080/22797254.2021.1920341
|
[21] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected con-volutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:2261-2269.
|
[22] |
Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks. 2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy.IEEE, 2017:764-773.
|
[23] |
Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]// European Conference on Computer Vision.Springer. 2018:3-19.
|
[24] |
Yang L, Chen W, Bi P S, et al. Improving vegetation segmentation with shadow effects based on double input networks using polarization images[J]. Computers and Electronics in Agriculture, 2022,199:107123.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|