|
|
|
|
|
|
Investigating land use and carbon storage changes in Jinan metropolitan circle based on the InVEST-PLUS coupled model |
XING Xiaotian1( ), WANG Qi1, ZHAO Jiajun1, LIU Pudong1( ), ZHANG Jingyuan2 |
1. School of Surveying and Mapping and Geographic Information, Shandong Jianzhu University, Jinan 250101, China 2. School of Art, Shandong Jianzhu University, Jinan 250101, China |
|
|
Abstract Exploring land use evolution and its impact on carbon storage is significant for mitigating climate change and promoting green and low-carbon development in metropolitan circles. Under the carbon peak and neutrality goals, this study implemented dual-constraint transition matrix optimization using point-of-interest (POI) data and the patch-generating land use simulation (PLUS) model, followed by the coupling with the integrated valuation of ecosystem services and trade-offs (InVEST) model. Based on the InVEST-PLUS coupled model, this study analyzed the land use evolution in the Jinan metropolitan circle from 2000 to 2020 and its impact on ecosystem carbon storage. Considering natural development, urban development, and ecological conservation as three distinct scenarios, this study simulated and predicted the land use change in the Jinan metropolitan circle in 2030 and 2060. Moreover, this study estimated the corresponding ecosystem carbon storage and analyzed the shift of the carbon storage center. Finally, this study explored the factors driving the spatial differentiation of carbon storage using the optimal parameters-based geographical detector (OPGD). The results indicate that from 2000 to 2020, the Jinan metropolitan circle saw a continued decrease in arable land, grassland, and unused land; a fluctuating increase in forest land; and a rapid increase in water area and construction land. The carbon storage and land use pattern in the Jinan metropolitan circle showed similar distributions characterized by higher values in the southeast and lower values in the northwest, with the main body of the Yellow River as the dividing line. The carbon storage in arable land served as the primary source of carbon storage in the Jinan metropolitan circle since it represented over 80 % of the total carbon storage. The simulation results reveal decreased carbon storage under the three scenarios, primarily due to the conversion from arable land in high carbon-density areas to construction land in low carbon-density areas. The ecological conservation scenario shows the highest total estimated carbon storage, which is 4 226.86×106 t in 2030 and 3 967.94×106 t in 2060. The carbon storage center in the Jinan metropolitan circle displays a certain shift in different development periods and scenarios due to land use change. However, the carbon storage center remains located in Licheng District, suggesting that the development of the Jinan metropolitan circle is relatively comprehensive and balanced. Various driving factors manifest significant impacts on the spatial distribution of carbon storage in the Jinan metropolitan circle. Notably, population density shows the greatest explanatory power for the spatial differentiation of carbon storage. Additionally, the interactions of various factors enhance their explanatory power for carbon storage.
|
Keywords
land use change
carbon storage
point-of-interest (POI) data
patch-generating land use simulation (PLUS) model
integrated valuation of ecosystem services and trade-offs (InVEST) model
optimal parameters-based geographical detector (OPGD)
Jinan metropolitan circle
|
|
Issue Date: 03 September 2025
|
|
|
[1] |
孙汇颖, 宫巧巧, 刘庆果, 等. 基于土地利用变化的山东省生境质量时空演变特征[J]. 土壤通报, 2022, 53(5):1019-1028.
|
[1] |
Sun H Y, Gong Q Q, Liu Q G, et al. Spatio-temporal evolution of habitat quality based on the land-use changes in Shandong Province[J]. Chinese Journal of Soil Science, 2022, 53(5):1019-1028.
|
[2] |
龙文芹, 职露, 郭娅迪, 等. 西洞庭湖自然保护区2000—2020年间碳储量时空演变及成因分析[J]. 自然资源遥感, 2024, 36(4):185-192.doi:10.6046/zrzyyg.2023265.
|
[2] |
Long W J, Zhi L, Guo Y D, et al. Spatiotemporal evolution and origin of carbon stock in the West Dongting Lake National Nature Reserve over the last two decades[J]. Remote Sensing for Natural Resources, 2024, 36(4):185-192.doi:10.6046/zrzyyg.2023265.
|
[3] |
Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850—2000[J]. Tellus B, 2003, 55(2):378-390.
|
[4] |
Lin X, Fu H. Spatial-temporal evolution and driving forces of cultivated land based on the PLUS model:A case study of Haikou city,1980—2020[J]. Sustainability, 2022, 14(21):14284.
|
[5] |
杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022(4):175-182.doi:10.6046/zrzyyg.2021348.
|
[5] |
Yang L W, Zhao J, Zhu J T, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022(4):175-182.doi:10.6046/zrzyyg.2021348.
|
[6] |
Feng Y, Chen S, Tong X, et al. Modeling changes in China’s 2000-2030 carbon stock caused by land use change[J]. Journal of Cleaner Production, 2020, 252:119659.
|
[7] |
杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学(生命科学), 2022, 52(4):534-574.
|
[7] |
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica (Vitae), 2022, 52(4):534-574.
|
[8] |
方精云, 于贵瑞, 任小波, 等. 中国陆地生态系统固碳效应——中国科学院战略性先导科技专项 “应对气候变化的碳收支认证及相关问题” 之生态系统固碳任务群研究进展[J]. 中国科学院院刊, 2015, 30(6):848-857.
|
[8] |
Fang J Y, Yu G R, Ren X B, et al. Carbon sequestration in China’s terrestrial ecosystems under climate change—Progress on ecosystem carbon sequestration from the CAS strategic priority research program[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6):848-857.
|
[9] |
贾天朝, 胡西武, 张娜娜. 三江源国家公园生态安全评价及障碍因子研究[J]. 河北环境工程学院学报, 2023, 33(1):48-54.
|
[9] |
Jia T C, Hu X W, Zhang Nana. Study on ecological security assessment and obstacle actors of Sanjiangyuan National Park[J]. Journal of Hebei University of Environmental Engineering, 2023, 33(1):48-54.
|
[10] |
李佳珂, 邵战林. 基于PLUS和InVEST模型的乌鲁木齐市碳储量时空演变与预测[J]. 干旱区研究, 2024, 41(3):499-508.
|
[10] |
Li J K, Shao Z L. Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models[J]. Arid Zone Research, 2024, 41(3):499-508.
|
[11] |
王子昊, 王冰, 张宇飞, 等. 基于PLUS-InVEST模型的呼和浩特市多情景土地利用变化动态模拟及碳储量评估[J]. 农业资源与环境学报, 2024, 41(2):292-304.
|
[11] |
Wang Z H, Wang B, Zhang Y F, et al. Dynamic simulation of multi-scenario land use change and carbon storage assessment in Hohhot City based on PLUS-InVEST model[J]. Journal of Agricultural Resources and Environment, 2024, 41(2):292-304.
|
[12] |
He C, Zhang D, Huang Q, et al. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models[J]. Environmental Modelling and Software, 2016, 75:44-58.
|
[13] |
Yang B, Chen X, Wang Z, et al. Analyzing land use structure efficiency with carbon emissions:A case study in the Middle Reaches of the Yangtze River,China[J]. Journal of Cleaner Production, 2020, 274:123076.
|
[14] |
李梓涵, 于慧, 巩飞, 等. 基于PLUS-InVEST模型的生态脆弱区生境质量时空演变分析[J]. 湖北农业科学, 2024, 63(2):254-260.
|
[14] |
Li Z H, Yu H, Gong F, et al. Temporal and spatial evolution analysis of habitat quality in ecologically vulnerable areas based on PLUS-InVEST model[J]. Hubei Agricultural Sciences, 2024, 63(2):254-260.
|
[15] |
Piyathilake I D U H, Udayakumara E P N, Ranaweera L V, et al. Modeling predictive assessment of carbon storage using InVEST model in Uva Province,Sri Lanka[J]. Modeling Earth Systems and Environment, 2022, 8(2):2213-2223.
|
[16] |
Zhao M, He Z, Du J, et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models[J]. Ecological Indicators, 2019, 98:29-38.
|
[17] |
傅楷翔, 贾国栋, 余新晓, 等. 耦合PLUS-InVEST-Geodector模型的新疆地区碳储量时空变化及驱动机制分析[J]. 环境科学, 2024, 45(9):5416-5430.
|
[17] |
Fu K X, Jia G D, Yu X X, et al. Analysis of temporal and spatial carbon stock changes and driving mechanism in Xinjiang Region by coupled PLUS-InVEST-geodector model[J]. Environmental Science, 2024, 45(9):5416-5430.
|
[18] |
许澳康, 胡梦珺, 石晶, 等. 石羊河流域生态系统碳储量时空变化及多情景模拟[J]. 中国环境科学, 2024, 44(6):3365-3375.
|
[18] |
Xu A K, Hu M J, Shi J, et al. Spatial and temporal variability of ecosystem carbon storages and multi-scenario simulation in the Shiyang River Basin[J]. China Environmental Science, 2024, 44(6):3365-3375.
|
[19] |
卢震. 未来蓝图“过审” 济南都市圈乘风而起[N]. 济南日报,2024-01-30(1).
|
[19] |
Lu Z. Future blueprint approved: Jinan Metropolitan Area rides the wave[N]. Jinan Daily,2024-01-30(1).
|
[20] |
李凯, 侯鹰, 付奇, 等. 都市圈 “三生空间” 协同变化及其对生态系统服务的影响[J]. 水土保持研究, 2023, 30(3):430-439.
|
[20] |
Li K, Hou Y, Fu Q, et al. Synergistic changes of production-living-ecology spaces and their influences on ecosystem services in the metropolitan area[J]. Research of Soil and Water Conservation, 2023, 30(3):430-439.
|
[21] |
冯一凡, 李翅, 冯君明. 基于GTWR模型的济南都市圈生态系统服务价值对城市扩张时空响应[J]. 北京林业大学学报, 2024, 46(1):104-118.
|
[21] |
Feng Y F, Li C, Feng J M. Spatiotemporal response of ecosystem service value in Jinan metropolitan area to urban expansion based on GTWR model[J]. Journal of Beijing Forestry University, 2024, 46(1):104-118.
|
[22] |
Chen C, Liu J, Bi L. Spatial and temporal changes of habitat quality and its influential factors in China based on the InVEST model[J]. Forests, 2023, 14(2):374.
|
[23] |
丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6):3343-3352.
|
[23] |
Ding Y, Wang L Z, Gui F, et al. Ecosystem carbon storage in Hangzhou Bay Area based on InVEST and PLUS models[J]. Environmental Science, 2023, 44(6):3343-3352.
|
[24] |
于芝琳, 赵明松, 高迎凤, 等. 基于InVEST-PLUS模型的淮北市碳储量时空演变及预测[J]. 环境科学, 2024, 45(6):3270-3283.
|
[24] |
Yu Z L, Zhao M S, Gao Y F, et al. Spatio-temporal evolution and prediction of carbon storage in Huaibei City based on InVEST-PLUS model[J]. Environmental Science, 2024, 45(6):3270-3283.
|
[25] |
方精云, 黄耀, 朱江玲, 等. 森林生态系统碳收支及其影响机制[J]. 中国基础科学, 2015, 17(3):20-25,F0002.
|
[25] |
Fang J Y, Huang Y, Zhu J L, et al. Carbon budget of forest ecosystems and its driving forces[J]. China Basic Science, 2015, 17(3):20-25,F0002.
|
[26] |
边蕊, 赵安周, 刘宪锋, 等. 关中平原城市群土地利用变化对碳储量的影响[J]. 环境科学, 2024, 45(6):3260-3269.
|
[26] |
Bian R, Zhao A Z, Liu X F, et al. Impact of land use change on carbon storage in urban agglomerations in the Guanzhong Plain[J]. Environmental Science, 2024, 45(6):3260-3269.
|
[27] |
秦慧颖. 山东省土地利用情景模拟与生态系统服务预测[D]. 济南: 山东大学, 2022.
|
[27] |
Qin H Y. Scenario simulation of land use and prediction of ecosystem services in Shandong Province[D]. Jinan: Shandong University, 2022.
|
[28] |
Gao L, Tao F, Liu R, et al. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model:A case study of Nanjing[J]. Sustainable Cities and Society, 2022, 85:104055.
|
[29] |
林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的碳储量空间关联性及预测 ——以广东省为例[J]. 中国环境科学, 2022, 42(10):4827-4839.
|
[29] |
Lin T, Yang M Z, Wu D F, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model:A case study in Guangdong Province[J]. China Environmental Science, 2022, 42(10):4827-4839.
|
[30] |
梁甜, 黄茜, 杨霏, 等. 基于InVEST-PLUS模型的三峡库区(重庆段)生境质量演变及预测[J]. 长江流域资源与环境, 2023, 32(10):2184-2195.
|
[30] |
Liang T, Huang Q, Yang F, et al. Evolution and prediction of habitat quality in the Three Gorges Reservoir(Chongqing section)based on the in VEST-PLUS model[J]. Resources and Environment in the Yangtze Basin, 2023, 32(10):2184-2195.
|
[31] |
Zhang S, Zhong Q, Cheng D, et al. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta Region[J]. Ecological Indicators, 2022, 136:108642.
|
[32] |
毛永发, 周启刚, 王陶, 等. 耦合PLUS-InVEST-Geodector模型的三峡库区碳储量时空变化及其定量归因[J]. 长江流域资源与环境, 2023, 32(5):1042-1057.
|
[32] |
Mao Y F, Zhou Q G, Wang T, et al. Spatial-temporal variation of carbon storage and its quantitative attribution in the Three Gorges Reservoir Area coupled with PLUS-InVEST geodector model[J]. Resources and Environment in the Yangtze Basin, 2023, 32(5):1042-1057.
|
[33] |
邵壮, 陈然, 赵晶, 等. 基于FLUS与InVEST模型的北京市生态系统碳储量时空演变与预测[J]. 生态学报, 2022, 42(23):9456-9469.
|
[33] |
Shao Z, Chen R, Zhao J, et al. Spatio-temporal evolution and prediction of carbon storage in Beijing’s ecosystem based on FLUS and InVEST models[J]. Acta Ecologica Sinica, 2022, 42(23):9456-9469.
|
[34] |
国务院关于《山东省国土空间规划(2021—2035年)》的批复[J]. 中华人民共和国国务院公报, 2023(29):19-20.
|
[34] |
Reply of the “Land and Spatial Planning of Shandong Province (2021-2035)”[J]. Gazette of the State Council of the People’s Republic of China, 2023(29):19-20.
|
[35] |
济南市人民政府关于印发《济南市新型城镇化规划(2021—2035年)》的通知[J]. 济南市人民政府公报, 2022(15):2-34.
|
[35] |
The New Urbanization Plan of Jinan City (2021-2035)[J]. Gazette of Jinan Municipality People’s Government, 2022(15):2-34.
|
[36] |
雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报, 2023(2):300-314.
|
[36] |
Luo S Q, Hu X M, Sun Y, et al. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model[J]. Chinese Journal of Eco-Agriculture, 2023(2):300-314.
|
[37] |
李俊, 杨德宏, 吴锋振, 等. 基于PLUS与InVEST模型的昆明市土地利用变化动态模拟与碳储量评估[J]. 水土保持通报, 2023, 43(1):378-387.
|
[37] |
Li J, Yang D H, Wu F Z, et al. Dynamic simulation of land use changes and assessment of carbon storage in Kunming City based on PLUS and in VEST models[J]. Bulletin of Soil and Water Conservation, 2023, 43(1):378-387.
|
[38] |
Liang X, Guan Q, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model:A case study in Wuhan,China[J]. Computers,Environment and Urban Systems, 2021, 85:101569.
|
[39] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
|
[39] |
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
|
[40] |
石晶, 石培基, 王梓洋, 等. 基于PLUS-InVEST模型的酒泉市生态系统碳储量时空演变与预测[J]. 环境科学, 2024, 45(1):300-313.
|
[40] |
Shi J, Shi P J, Wang Z Y, et al. Spatial-temporal evolution and prediction of carbon storage in Jiuquan city ecosystem based on PLUS-InVEST model[J]. Environmental Science, 2024, 45(1):300-313.
|
[41] |
李琛, 吴映梅, 高彬嫔, 等. 高原湖泊乡村聚落空间分异及驱动力探测——以环洱海地区为例[J]. 经济地理, 2022, 42(4):220-229.
|
[41] |
Li C, Wu Y M, Gao B P, et al. Spatial differentiation and driving factors of rural settlement in plateau lake:A case study of the area around the Erhai[J]. Economic Geography, 2022, 42(4):220-229.
|
[42] |
王锴, 朴世龙, 何悦, 等. 中国陆地生态系统碳汇稳定性的空间分布特征及驱动机制[J]. 中国科学(地球科学), 2023, 53(2):216-226.
|
[42] |
Wang K, Piao S L, He Y, et al. Spatial variations and mechanisms for the stability of terrestrial carbon sink in China[J]. Scientia Sinica (Terrae), 2023, 53(2):216-226.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|