|
|
|
|
|
|
Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data |
ZHANG Jinhua1,2,3( ), HU Zhongwen1,2,3( ), ZHANG Yinghui1,2,3, ZHANG Qian1,2,3, WANG Jingzhe1,4, WU Guofeng1,2,3 |
1. MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University, Shenzhen 518060, China 2. Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China 3. School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China 4. School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518060, China |
|
|
|
|
Abstract Vegetation distribution serves as a crucial foundation for natural resource conservation and ecosystem health assessment. In mountainous regions, substantial terrain undulations and complex vegetation types complicate the mapping process. Moreover, the traditional remote sensing-based vegetation classification, whose mapping relies on 2D imagery, fails to depict the vertical structure and 3D spatial distribution of vegetation. To investigate the potential of realistic 3D models in fine-scale vegetation classification and mapping, this study proposed a realistic 3D model-based mapping approach for mountain vegetation by integrating optical images and light detection and ranging (LiDAR) data. Focusing on Neilingding Island in Guangdong, this study constructed a multi-source dataset using realistic 3D models, multispectral images, and LiDAR point clouds acquired by unmanned aerial vehicle (UAV)-based measurements, followed by data registration and feature extraction. Subsequently, the LightGBM algorithm was employed to achieve fine-scale vegetation classification and to assess the classification performance of multi-source data features. Finally, semantic 3D mesh models of vegetation were generated by projecting the 2D vegetation maps onto the 3D models. The results indicate that realistic 3D models can effectively distinguish vegetation types. Their combination with multispectral and LiDAR data provides a more comprehensive description of the topography and vegetation structures in mountainous areas. Compared to using a single data source, this approach achieves an increase in the overall accuracy (OA) of 2D classification by 4.28% to 11.29%. Concurrently, the OA of the 3D mapping based on realistic 3D models reached 92.06%, with a Kappa coefficient of 0.89. This approach can reflect the accurate, visualized, 3D distribution patterns of mountain vegetation and improve the accuracy of fine-scale vegetation information extraction. This study demonstrates the significant potential of 3D model-multisource data integration for natural resource monitoring and provides novel ideas and methods for fine-scale and 3D information extraction of regional vegetation.
|
| Keywords
realistic 3D model
3D mapping
fine-scale classification of vegetation
mountain vegetation
light detection and ranging (LiDAR)
multispectral
multi-source data fusion
|
|
|
|
Issue Date: 31 December 2025
|
|
|
| [1] |
De Frenne P, Zellweger F, Rodríguez-Sánchez F, et al. Global buffering of temperatures under forest canopies[J]. Nature Ecology and Evolution, 2019, 3(5):744-749.
doi: 10.1038/s41559-019-0842-1
|
| [2] |
Seidl R, Schelhaas M J, Rammer W, et al. Increasing forest disturbances in Europe and their impact on carbon storage[J]. Nature Climate Change, 2014, 4(9):806-810.
pmid: 25737744
|
| [3] |
Lu Y, Wang L. How to Automate timely large-scale mangrove mapping with remote sensing[J]. Remote Sensing of Environment, 2021,264:112584.
|
| [4] |
明義森, 刘启航, 柏荷, 等. 利用光学和SAR遥感数据的若尔盖湿地植被分类与变化监测[J]. 遥感学报, 2023, 27(6):1414-1425.
|
| [4] |
Ming Y S, Liu Q H, Bai H, et al. Classification and change detection of vegetation in the Ruoergai Wetland using optical and SAR remote sensing data[J]. National Remote Sensing Bulletin, 2023, 27(6):1414-1425.
doi: 10.11834/jrs.20221767
url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20221767/
|
| [5] |
Marselis S M, Tang H, Armston J D, et al. Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic:A case study in Lopé National Park,Gabon[J]. Remote Sensing of Environment, 2018,216:626-634.
|
| [6] |
吴培强, 任广波, 张程飞, 等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报, 2022, 26(6):1169-1181.
|
| [6] |
Wu P Q, Ren G B, Zhang C F, et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin, 2022, 26(6):1169-1181.
doi: 10.11834/jrs.20221484
url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20221484/
|
| [7] |
张妮娜, 张珂, 李运平, 等. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用, 2023, 38(1):163-172.
doi: 10.11873/j.issn.1004-0323.2023.1.0163
|
| [7] |
Zhang N N, Zhang K, Li Y P, et al. Study on Machine Learning methods for vegetation classification in typical humid mountainous areas of south China based on the UAV multispectral remote sensing[J]. Remote Sensing Technology and Application, 2023, 38(1):163-172.
|
| [8] |
郭逸飞, 吴田军, 骆剑承, 等. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7):1406-1419.
doi: 10.12082/dqxxkx.2022.210594
|
| [8] |
Guo Y F, Wu T J, Luo J C, et al. Remote sensing mapping of mountain vegetation via uncertainty-based iterative optimization[J]. Journal of Geo-Information Science, 2022, 24(7):1406-1419.
|
| [9] |
杨丹, 周亚男, 杨先增, 等. LSTM支持下时序Sentinel-1A数据的太白山区植被制图[J]. 地球信息科学学报, 2020, 22(12):2445-2455.
doi: 10.12082/dqxxkx.2020.200338
|
| [9] |
Yang D, Zhou Y N, Yang X Z, et al. Vegetation mapping in Taibai Mountain area supported by LSTM with time series sentinel-1A data[J]. Journal of Geo-Information Science, 2020, 22(12):2445-2455.
|
| [10] |
张帆, 黄先锋, 高云龙, 等. 实景三维中国建设技术大纲(2021版)解读与思考[J]. 测绘地理信息, 2021, 46(6):171-174.
|
| [10] |
Zhang F, Huang X F, Gao Y L, et al. Interpretation and reflection on technology outline of national 3D real scene(2021 edition)[J]. Journal of Geomatics, 2021, 46(6):171-174.
|
| [11] |
曲俸磊, 胡忠文, 张英慧, 等. 基于多视角二维投影的实景三维模型解译[J]. 地球信息科学学报, 2024, 26(3):654-665.
doi: 10.12082/dgxxkx.2024.230520
|
| [11] |
Qu F L, Hu Z W, Zhang Y H, et al. Classification of textured 3D mesh models based on multiview 2D mapping[J]. Journal of Geo-Information Science, 2024, 26(3):654-665.
|
| [12] |
Rouhani M, Lafarge F, Alliez P. Semantic segmentation of 3D textured meshes for urban scene analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,123:124-139.
|
| [13] |
Laupheimer D, Haala N. Multi-modal semantic mesh segmentation in urban scenes[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2022,V-2-2022:267-274.
|
| [14] |
董梦成, 谢科, 黄惠. 城区场景建筑物单体分割与结构重建耦合研究[J]. 中国科学:信息科学, 2024, 54(2):281-300.
|
| [14] |
Dong M C, Xie K, Huang H. Coupled study on instance segmentation and structural reconstruction of buildings in 3D urban scenes[J]. Scientia Sinica (Informationis), 2024, 54(2):281-300.
|
| [15] |
张荣庭, 张广运, 尹继豪. 复杂城市动态图卷积网络三维场景语义分割法[J]. 测绘学报, 2023, 52(10):1703-1713.
doi: 10.11947/j.AGCS.2023.20220466
|
| [15] |
Zhang R T, Zhang G Y, Yin J H. Semantic segmentation method of 3D scenes using dynamic graph CNN for complex city[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10):1703-1713.
doi: 10.11947/j.AGCS.2023.20220466
|
| [16] |
Wu Z, Ni M, Hu Z, et al. Mapping invasive plant with UAV-derived 3D mesh model in mountain area—a case study in Shenzhen Coast,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,77:129-139.
|
| [17] |
Jurado J M, Ortega L, Cubillas J J, et al. Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees[J]. Remote Sensing, 2020, 12(7):1106.
doi: 10.3390/rs12071106
url: https://www.mdpi.com/2072-4292/12/7/1106
|
| [18] |
乔雪婷, 张娟娟, 李文斌, 等. 基于无人机遥感技术的广东内伶仃岛植被类型划分与植被图[J]. 中山大学学报(自然科学版), 2022, 61(4):22-30.
|
| [18] |
Qiao X T, Zhang J J, Li W B, et al. Vegetation classification and vegetation map of Neilingding Island in Guangdong Province based on UAV remote sensing technology[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(4):22-30.
|
| [19] |
Martinez A, Garcia-Consuegra J, Abad F. A correlation-symbolic approach to automatic remotely sensed image rectification[C]// IEEE 1999 International Geoscience and Remote Sensing Symposium.IGARSS’99.June 28 - July 2,1999, Hamburg,Germany.IEEE, 2002:336-338.
|
| [20] |
Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
doi: 10.1109/34.121791
url: http://ieeexplore.ieee.org/document/121791/
|
| [21] |
Weinmann M, Jutzi B, Hinz S, et al. Semantic point cloud interpretation based on optimal neighborhoods,relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:286-304.
|
| [22] |
Ferreira M P, Wagner F H, Aragão L E O C, et al. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,149:119-131.
|
| [23] |
陈树新, 刘炳杰, 王海熠, 等. 结合可见光植被指数和分水岭算法的单木树冠信息提取[J]. 遥感技术与应用, 2024, 39(1):34-44.
doi: 10.11873/j.issn.1004-0323.2024.1.0034
|
| [23] |
Chen S X, Liu B J, Wang H Y, et al. Extraction of individual tree crown based on UAV tilt photogrammetry[J]. Remote Sensing Technology and Application, 2024, 39(1):34-44.
|
| [24] |
Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.
doi: 10.3390/rs8060501
url: https://www.mdpi.com/2072-4292/8/6/501
|
| [25] |
鄢敏, 夏永华, 王冲, 等. 无人机点云与图像跨模态混合融合的乔木林单木尺度树种分类研究[J]. 遥感技术与应用, 2024, 39(1):87-97.
doi: 10.11873/j.issn.1004-0323.2024.1.0087
|
| [25] |
Yan M, Xia Y H, Wang C, et al. Study on classification of Arbor tree species at single tree scale based on cross-modal hybrid fusion of UAV point cloud and image[J]. Remote Sensing Technology and Application, 2024, 39(1):87-97.
|
| [26] |
Ke G, Meng Q, Finley T, et al. LightGBM[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.December 4 - 9,2017,Long Beach,California,USA.ACM, 2017:3149-3157.
|
| [27] |
史飞飞, 高小红, 肖建设, 等. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1):115-126.doi:10.6046/zrzyyg.2021064.
|
| [27] |
Shi F F, Gao X H, Xiao J S, et al. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1):115-126.doi:10.6046/zrzyyg.2021064.
|
| [28] |
Qin H, Zhou W, Yao Y, et al. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR,hyperspectral,and ultrahigh-resolution RGB data[J]. Remote Sensing of Environment, 2022,280:113143.
|
| [29] |
Alonzo M, Bookhagen B, Roberts D A. Urban tree species mapping using hyperspectral and lidar data fusion[J]. Remote Sensing of Environment, 2014,148:70-83.
|
| [30] |
徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.
|
| [30] |
Xu Y, Zhen J N, Jiang X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. National Remote Sensing Bulletin, 2021, 25(3):737-752.
doi: 10.11834/jrs.20210281
url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20210281/
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|