Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 16-24    DOI: 10.6046/zrzyyg.2022143
  综述 本期目录 | 过刊浏览 | 高级检索 |
遥感估算河道流量研究进展
李和谋1,2,3(), 白娟3, 甘甫平3(), 李贤庆1,2, 王泽坤1,2,3
1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083
2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
3.中国自然资源航空物探遥感中心,北京 100083
River discharge estimation based on remote sensing
LI Hemou1,2,3(), BAI Juan3, GAN Fuping3(), LI Xianqing1,2, WANG Zekun1,2,3
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology(Beijing), Beijing 100083, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(715 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

鉴于全球径流数据的可获得性逐年下降,替代水文站点实测河道流量的反演算法正变得越来越重要。当前卫星遥感技术不断发展,估算河道流量的方法亦逐渐丰富,为此,该文对遥感技术反演河道流量的方法进行系统总结,并归纳了与河道流量估算密切相关的水力遥感要素反演方法及其进展情况。首先,梳理基于水文模型和基于经验回归方程2 类算法的方法原理和应用现状; 然后,总结不同方法的适用条件和存在不足; 最后,展望未来通过卫星遥感技术反演世界范围内河道流量的发展趋势: ①积极开发先进卫星遥感数据同化技术; ②集成新的传感器产品; ③优化与创新算法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李和谋
白娟
甘甫平
李贤庆
王泽坤
关键词 河道流量遥感水位河宽水力特征    
Abstract

Since the availability of global runoff data decrease year by year, the inversion algorithms, as substitutes for the river discharge measured at hydrological stations, have become increasingly important. With the continuous development of satellite remote sensing technology, the methods for estimating river discharge have increased in number. This study systematically summarized the remote sensing-based inversion methods for river discharge, as well as the inversion methods for hydraulic remote sensing elements that are closely related to the estimation of river discharge and the progress made in them. Moreover, this study reviewed the methods, principles, and application status of two types of algorithms based on hydrological models and empirical regression equations and summarized the applicable conditions and shortcomings of different methods. Finally, this study predicted the worldwide development trends of the river discharge inversion based on the satellite remote sensing technology, including ① actively developing the advanced data assimilation technology for satellite remote sensing data; ② integrating new sensor products; ③ optimizing and innovating algorithms.

Key wordsriver discharge    remote sensing    water level    river width    hydraulic characteristics
收稿日期: 2022-04-14      出版日期: 2023-07-07
ZTFLH:  TP79  
基金资助:自然资源部航空地球物理与遥感地质重点实验室课题“多平台遥感数据估算河流流量方法研究”(2020YFL22);高分专项(民用)项目“高分航空载荷自然资源调查应用示范”(04-H30G01-9001-20/22-01-08)
通讯作者: 甘甫平(1971-),男,研究员,主要从事遥感技术方法及地学应用研究。Email: fpgan@aliyun.com
作者简介: 李和谋(1998-),男,硕士研究生,主要从事水文学及水资源研究。Email: j710714068@163.com
引用本文:   
李和谋, 白娟, 甘甫平, 李贤庆, 王泽坤. 遥感估算河道流量研究进展[J]. 自然资源遥感, 2023, 35(2): 16-24.
LI Hemou, BAI Juan, GAN Fuping, LI Xianqing, WANG Zekun. River discharge estimation based on remote sensing. Remote Sensing for Natural Resources, 2023, 35(2): 16-24.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022143      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/16
研究方法 研究人员及年份 使用数据/空间分辨
率/重返周期
研究流域 主要结论
基于水文模型 Getirana等[21]
(2013年)
ENVISAT/350 m/35 d 南美洲亚马孙河 在水文模型参数率定时采用雷达测高数据能得到模型合理参数
Liu等[22](2015年) Landsat/30 m/16 d
ENVISAT/350 m/35 d
北美红河 此方法能够估算大型无资料地区河流的流量
Sun等[23](2018年) QuickBird/0.6 m/4~6 d
IKONOS/0.58 m/3 d
WorldView-1/0.81 m/1.7 d
中国雅砻江 仅基于高精度遥感河宽数据校准的水文模型能够估算河道流量
基于经验回归方程 水位-流量经验曲线法 Kouraev等[27]
(2004年)
TOPEX-Poseidon/600 m/10 d 北极鄂毕河 卫星测高数据可以估算大型流域的部分河道流量演算
Birkinshaw等[30]
(2010年)
ERS-2/30 m/35 d
ENVISAT/350 m/35 d
亚洲湄公河 NSE介于0.823~0.935之间
Papa等[31]
(2012年)
Jason-2/12.5 m/10 d 亚洲恒河和雅鲁藏布江 平均误差为13%和6.5%
河宽-流量经验曲线法 Smith等[36](2008年) MODIS/250 m/8 d 俄罗斯勒拿河 在河流长度足够长时,可以将建立的河宽-流量关系曲线延用到河流其他位置
Pavelsky等[37]
(2014年)
RapidEye/5 m/1 d 北美塔纳诺河 相对误差为6.7%
Elmi等[38]
(2015年)
MODIS/250 m/8 d 非洲尼日尔河 改进河宽-流量经验曲线算法不需要流量数据与卫星图像同步观测
C/M信号法 Brakenridge等[39]
(2007年)
AMSR-E/25 km/16 d 全球57 条河流 基于被动微波遥感亮度温度的C/M信号法能够估算河流流量
Tarpanelli等[40]
(2013年)
MODIS/250 m/8 d 欧洲波河 基于光学遥感数据的C/M信号法可以估算中型流域流量
Li等[46](2019年) Landsat/30 m/16 d 中国黑河 基于C/M信号法发展出MPR法,能够估算小河流流量
AMHG法 Gleason等[48]
(2014年)
Landsat/30 m/16 d 全球34 条河流 相对均方根误差介于26%~41%之间
Rao等[49](2020年) ResourceSat/23 m/24 d
Landsat/30 m/16 d
印度4 条河流 NSE介于0.8~0.89之间
Mengen等[50]
(2020年)
Sentinel-1/10 m/6,12 d 亚洲湄公河 采用SAR卫星遥感数据,相对均方根误差为19.5%
多水力特征参数经验法 Birkinshaw等[53]
(2012年)
ERS-2/30 m/35 d
ENVISAT/350 m/35 d
Landsat/30 m/16 d
亚洲湄公河和北极鄂毕河 联合水位、河宽和河道坡度估算流量,NSE介于0.86~0.9之间
Sichangi等[55]
(2016年)
MODIS/250 m/8 d
10 个测高卫星数据
全球8 条河流 使用卫星反演水位和有效河宽估算流量,NSE介于0.60~0.97之间
Bjerklie等[54]
(2018年)
Jason-2/12.5 m/10 d
ICESat/70 m/91 d
Landsat/30 m/16 d
北美育空河 采用曼宁公式和普朗特卡门公式2种物理流阻方程估算流量
Yang等[4]
(2019年)
航空遥感(无人机) 中国新疆10 条河流 坡度-面积法与无人机遥感技术结合,能够估算无资料地区河流流量
Tab.1  利用遥感估算河流流量的相关研究综述
[1] Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols,climate, and the hydrological cycle[J]. Science, 2001, 294(5549):2119-2124.
doi: 10.1126/science.1064034 pmid: 11739947
[2] Deangelis A M, Qu X, Zelinka M, et al. An observational radiative constraint on hydrologic cycle intensification[J]. Nature, 2015, 528(7581):249-253.
doi: 10.1038/nature15770
[3] Li Y, Piao S, Li L Z, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances, 2018, 4(5):eaar4182.
doi: 10.1126/sciadv.aar4182
[4] Yang S, Wang P, Lou H, et al. Estimating river discharges in ungauged catchments using the slope-area method and unmanned aerial vehicle[J]. Water, 2019, 11(11):2361.
doi: 10.3390/w11112361
[5] Fekete B M, Vrsmarty C J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements[C]// Proceeding of Predictions in Ungauged Basins. 2007, 309(20):129-136.
[6] Gleason C J, Durand M T. Remote sensing of river discharge:A review and a framing for the discipline[J]. Remote Sensing, 2020, 12(7):1107.
doi: 10.3390/rs12071107
[7] Smith L C, Yang K, Pitcher L H, et al. Direct measurements of meltwater runoff on the Greenland ice sheet surface[C]// Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50):e10622-e10631.
[8] 陈晓宏, 钟睿达, 王兆礼, 等. 新一代GPM IMERG卫星遥感降水数据在中国南方地区的精度及水文效用评估[J]. 水利学报, 2017, 48(10):1147-1156.
Chen X H, Zhong R D, Wang Z L, et al. Evaluation on the accuracy and hydrological performance of the latest-generation GPM IMERG product over South China[J]. Journal of Hydraulic Engineering, 2017, 48(10):1147-1156.
[9] 王兆礼, 钟睿达, 赖成光, 等. TRMM卫星降水反演数据在珠江流域的适用性研究——以东江和北江为例[J]. 水科学进展, 2017, 28(2):174-182.
Wang Z L, Zhong R D, Lai C G, et al. Evaluation of TRMM 3B42-V7 satellite-based precipitation data product in the Pearl River basin,China:Dongjiang River and Beijiang River basin as examples[J]. Advances in Water Science, 2017, 28(2):174-182.
[10] Sheffield J, Wood E F, Pan M, et al. Satellite remote sensing for water resources management:Potential for supporting sustainable development in data-poor regions[J]. Water Resources Research, 2018, 54(12):9724-9758.
doi: 10.1029/2017WR022437
[11] 周启鸣, 李剑锋, 崔爱红, 等. 中亚干旱区陆地水资源评估方法与挑战[J]. 水文, 2021, 41(1):15-21,72.
Zhou Q M, Li J F, Cui A H, et al. The state-of-the-art and prospective of terrestrial water resource assessment in central Asia arid zone[J]. Journal of China Hydrology, 2021, 41(1):15-21,72.
[12] Alsdorf D E. Tracking freshwater from space[J]. Science, 2003, 301(5639):1098-1112.
[13] Bjerklie D M, Ayotte J D, Cahillane M J. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire[R]. US Geological Survey Scientific Investigations Report: Reston, VA,USA, 2015.
[14] 杨胜天, 王鹏飞, 王娟, 等. 结合无人机航空摄影测量的河道流量估算[J]. 遥感学报, 2021, 25(6):1284-1293.
Yang S T, Wang P F, Wang J, et al. River flow estimation method based on UAV aerial photogrammetry[J]. Journal of Remote Sensing, 2021, 25(6):1284-1293.
[15] Güntner A. Improvement of global hydrological models using GRACE data[J]. Surveys in Geophysics, 2008, 29(4):375-397.
doi: 10.1007/s10712-008-9038-y
[16] Li Q, Zhong B, Luo Z, et al. GRACE-based estimates of water discharge over the Yellow River basin[J]. Geodesy and Geodynamics, 2016, 7(3):187-193.
doi: 10.1016/j.geog.2016.04.007
[17] Simons G, Bastiaanssen W, Ngo L A, et al. Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies:A case study for the Red River basin[J]. Remote Sensing, 2016, 8(4):279.
doi: 10.3390/rs8040279
[18] Laiolo P, Gabellani S, Campo L, et al. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 48:131-145.
doi: 10.1016/j.jag.2015.06.002
[19] Zhang D, Liu X, Bai P, et al. Suitability of satellite-based precipitation products for water balance simulations using multiple observations in a humid catchment[J]. Remote Sensing, 2019, 11(2):151.
doi: 10.3390/rs11020151
[20] Kittel C M, Arildsen A L, Dybkjae S, et al. Informing hydrological models of poorly gauged river catchments:A parameter regionalization and calibration approach[J]. Journal of Hydrology, 2020, 587:124999.
doi: 10.1016/j.jhydrol.2020.124999
[21] Getirana A C V, Boone A, Yamazaki D, et al. Automatic parameterization of a flow routing scheme driven by Radar altimetry data:Evaluation in the Amazon basin[J]. Water Resources Research, 2013, 49(1):614-629.
doi: 10.1002/wrcr.20077
[22] Liu G, Schwartz F W, Tseng K H, et al. Discharge and water-depth estimates for ungauged rivers:Combining hydrologic,hydraulic,and inverse modeling with stage and water-area measurements from satellites[J]. Water Resources Research, 2015, 51(8):6017-6035.
doi: 10.1002/2015WR016971
[23] Sun W, Fan J, Wang G, et al. Calibrating a hydrological model in a regional river of the Qinghai-Tibet Plateau using river water width determined from high spatial resolution satellite images[J]. Remote Sensing of Environment, 2018, 214:100-114.
doi: 10.1016/j.rse.2018.05.020
[24] Wongchuig-Correa S, de Paiva R C D, Biancamaria S, et al. Assimilation of future SWOT-based river elevations,surface extent observations and discharge estimations into uncertain global hydrological models[J]. Journal of Hydrology, 2020, 590:125473.
doi: 10.1016/j.jhydrol.2020.125473
[25] Huang Q, Long D, Du M, et al. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry:Implications for the SWOT mission[J]. Water Resources Research, 2020, 56(7):e2020WR027309.
[26] Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications[M]. Washington D C: US Government Printing Office, 1953.
[27] Kouraev A V, Zakharova E A, Samain O, et al. Ob’river discharge from TOPEX/Poseidon satellite altimetry (1992—2002)[J]. Remote Sensing of Environment, 2004, 93(1-2):238-245.
doi: 10.1016/j.rse.2004.07.007
[28] Zakharova E A, Kouraev A V, Cazenave A, et al. Amazon River discharge estimated from TOPEX/Poseidon altimetry[J]. Comptes Rendus Geoscience, 2006, 338(3):188-196.
doi: 10.1016/j.crte.2005.10.003
[29] Zakharova E A, Krylenko I N, Kouraev A V. Use of non-polar orbiting satellite Radar altimeters of the Jason series for estimation of river input to the Arctic Ocean[J]. Journal of Hydrology, 2019, 568:322-333.
doi: 10.1016/j.jhydrol.2018.10.068
[30] Birkinshaw S J, O’Donnell G M, Moore P, et al. Using satellite altimetry data to augment flow estimation techniques on the Mekong River[J]. Hydrological Processes, 2010, 24(26):3811-3825.
doi: 10.1002/hyp.v24.26
[31] Papa F, Bala S K, Pandey R K, et al. Ganga-Brahmaputra River discharge from Jason-2 Radar altimetry:An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the bay of Bengal[J]. Journal of Geophysical Research:Oceans, 2012, 117(c11):c11021.
[32] Papa F, Durand F, Rossow W B, et al. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008[J]. Journal of Geophysical Research, 2010, 115(c12):c12013.
[33] Junqueira A M, Mao F, Mendes T S G, et al. Estimation of river flow using CubeSats remote sensing[J]. Science of the Total Environment, 2021, 788:147762.
doi: 10.1016/j.scitotenv.2021.147762
[34] Smith L C, Isacks B L, Bloom A L, et al. Estimation of discharge from three braided rivers using synthetic aperture Radar satellite imagery:Potential application to ungaged basins[J]. Water Resources Research, 1996, 32(7):2021-2034.
doi: 10.1029/96WR00752
[35] Smith L C, Isacks B L, Forster R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture Radar:First results[J]. Water Resources Research, 1995, 31(5):1325-1329.
doi: 10.1029/95WR00145
[36] Smith L C, Pavelsky T M. Estimation of river discharge,propagation speed,and hydraulic geometry from space:Lena River,Siberia[J]. Water Resources Research, 2008, 44(3):W03247.
[37] Pavelsky T M. Using width-based rating curves from spatially discontinuous satellite imagery to monitor river discharge[J]. Hydrological Processes, 2014, 28(6):3035-3040.
[38] Elmi O, Tourian M J, Sneeuw N. River discharge estimation using channel width from satellite imagery[C]// Proceedings of the Geoscience and Remote Sensing Symposium, 2015:727-730.
[39] Brakenridge G R, Nghiem S V, Anderson E, et al. Orbital microwave measurement of river discharge and ice status[J]. Water Resources Research, 2007, 43(4):W04405.
[40] Tarpanelli A, Brocca L, Lacava T, et al. Toward the estimation of river discharge variations using MODIS data in ungauged basins[J]. Remote Sensing of Environment, 2013, 136:47-55.
doi: 10.1016/j.rse.2013.04.010
[41] Tarpanelli A, Amarnath G, Brocca L, et al. Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River[J]. Remote Sensing of Environment, 2017, 195:96-106.
doi: 10.1016/j.rse.2017.04.015
[42] Revilla-Romero B, Thielen J, Salamon P, et al. Evaluation of the satellite-based global flood detection system for measuring river discharge:Influence of local factors[J]. Hydrology and Earth System Sciences, 2014, 18(11):4467-4484.
doi: 10.5194/hess-18-4467-2014
[43] 许继军, 屈星, 曾子悦, 等. 基于高精度遥感亮温的典型流域河道径流模拟分析[J]. 水科学进展, 2021, 32(6):877-889.
Xu J J, Qu X, Zeng Z Y, et al. River runoff simulation and analysis for typical basins based on high- resolution brightness temperature observations[J]. Advances in Water Science, 2021, 32(6):877-889.
[44] Van Dijk A I, Brakenridge G R, Kettner A J, et al. River gauging at global scale using optical and passive microwave remote sensing[J]. Water Resources Research, 2016, 52(8):6404-6418.
doi: 10.1002/wrcr.v52.8
[45] Kim S, Sharma A. The role of floodplain topography in deriving basin discharge using passive microwave remote sensing[J]. Water Resources Research, 2019, 55(2):1707-1716.
doi: 10.1029/2018WR023627
[46] Li H, Li H, Wang J, et al. Extending the ability of near-infrared images to monitor small river discharge on the northeastern Tibetan Plateau[J]. Water Resources Research, 2019, 55(11):8404-8421.
doi: 10.1029/2018WR023808
[47] Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[C]// Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13):4788.
[48] Gleason C J, Smith L C, Lee J. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry:Sensitivity to river form and optimization parameters[J]. Water Resources Research, 2014, 50(12):9604-9619.
doi: 10.1002/wrcr.v50.12
[49] Rao K D, Shravya A, Dadhwal V. A novel method of satellite based river discharge estimation using river hydraulic geometry through genetic algorithm technique[J]. Journal of Hydrology, 2020, 589:125361.
doi: 10.1016/j.jhydrol.2020.125361
[50] Mengen D, Ottinger M, Leinenkugel P, et al. Modeling river discharge using automated river width measurements derived from Sentinel-1 time series[J]. Remote Sensing, 2020, 12(19):3236.
doi: 10.3390/rs12193236
[51] Hagemann M W, Gleason C J, Durand M T. BAM:Bayesian AMHG-manning inference of discharge using remotely sensed stream width,slope,and height[J]. Water Resources Research, 2017, 53(11):9692-9707.
doi: 10.1002/wrcr.v53.11
[52] Bjerklie D M, Lawrence D S, Vorosmarty C J, et al. Evaluating the potential for measuring river discharge from space[J]. Journal of Hydrology, 2003, 278(1-4):17-38.
doi: 10.1016/S0022-1694(03)00129-X
[53] Birkinshaw S J, Moore P, Kilsby C G, et al. Daily discharge estimation at ungauged river sites using remote sensing[J]. Hydrological Processes, 2012, 28(3):1043-1054.
doi: 10.1002/hyp.v28.3
[54] Bjerklie D M, Birkett C M, Jones J W, et al. Satellite remote sensing estimation of river discharge:Application to the Yukon River Alaska[J]. Journal of Hydrology, 2018, 561:1000-1018.
doi: 10.1016/j.jhydrol.2018.04.005
[55] Sichangi A W, Wang L, Yang K, et al. Estimating continental river basin discharges using multiple remote sensing data sets[J]. Remote Sensing of Environment, 2016, 179:36-53.
doi: 10.1016/j.rse.2016.03.019
[56] Huang Q, Long D, Du M, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211:112-128.
doi: 10.1016/j.rse.2018.04.018
[57] Kebede M G, Wang L, Yang K, et al. Discharge estimates for ungauged rivers flowing over complex high-mountainous regions based solely on remote sensing-derived datasets[J]. Remote Sensing, 2020, 12(7):1064.
doi: 10.3390/rs12071064
[58] Garambois P A, Monnier J. Inferrence of effective river properties from remotely sensed observations of water surface[J]. Advances in Water Resources, 2015, 79:103-120.
doi: 10.1016/j.advwatres.2015.02.007
[59] Yang S, Li C, Lou H, et al. Performance of an unmanned aerial vehicle (UAV) in calculating the flood peak discharge of ephemeral rivers combined with the incipient motion of moving stones in arid ungauged regions[J]. Remote Sensing, 2020, 12(10):1610.
doi: 10.3390/rs12101610
[60] Wufu A, Chen Y, Yang S, et al. Changes in glacial meltwater runoff and its response to climate change in the Tianshan region detected using unmanned aerial vehicles (UAVs) and satellite remote sensing[J]. Water, 2021, 13(13):1753.
doi: 10.3390/w13131753
[61] Thakur P K, Nikam B R, Garg V, et al. Hydrological parameters estimation using remote sensing and GIS for Indian region:A review[C]// Proceedings of the National Academy of Sciences India Section A: Physical Sciences, 2017, 87(4):641-659.
[62] Turnipseed D P, Sauer V B. Discharge measurements at gaging stations[R]. US Geological Survey, 2010.
[63] Romeiser R, Runge H, Suchandt S, et al. Current measurements in rivers by spaceborne along-track InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):4019-4031.
doi: 10.1109/TGRS.2007.904837
[64] Romeiser R, Suchandt S, Runge H, et al. First analysis of TerraSAR-X along-track InSAR-derived current fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):820-829.
doi: 10.1109/TGRS.2009.2030885
[65] Kaab A, Leprince S. Motion detection using near-simultaneous satellite acquisitions[J]. Remote Sensing of Environment, 2014, 154:164-179.
doi: 10.1016/j.rse.2014.08.015
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229.
[3] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[4] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[5] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[6] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[7] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[8] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[9] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[10] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[11] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[12] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[13] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[14] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[15] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发