Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 66-79    DOI: 10.6046/zrzyyg.2023352
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于随机森林的降水产品降尺度及其水文适用性评估
陈多妍(), 史岚()
南京信息工程大学地理科学学院,南京 210044
Downscaling of precipitation products based on the random forest and assessment of their hydrologic applicability
CHEN Duoyan(), SHI Lan()
School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(6326 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 全球卫星降水计划(global precipitation measurement mission,GDM)等降水产品以连续分布、空间范围广等优势被广泛应用于流域研究,但存在精度不足、空间分辨率低等问题。该文基于随机森林(random forests,RF)降尺度模型融合多源影响因子生成2种高空间分辨率的日降水产品RF1和RF2,并输入HEC-HMS(the hydrologic engineering centers-hydrologic modeling system)模型中模拟信江流域日径流量变化,评价RF1和RF2对GPM水文适用性的改进。结果表明: RF1和RF2均能改进GPM的数据精度与分布细节,RF2相关性更高、误差更小,探测降水事件的命中率方面RF1更优; RF1与GPM模拟的径流曲线相似且有较大改善,RF2修正了GPM的部分高估且在部分时段更接近真实流量曲线峰值,但因站点分布不均影响了对地形复杂区的预测,模拟精度受限。总体上看,RF1和RF2都能够有效反映信江流域的日降水变化情况,不同程度改进了GPM在水文应用能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈多妍
史岚
关键词 降尺度GPM随机森林径流模拟信江流域    
Abstract

Precipitation products, including the Global Precipitation Measurement (GPM) mission, have been widely used in river basin studies due to their advantages like continuous distributions and broad spatial ranges. However, they are limited by insufficient accuracy and low spatial resolution. Based on the random forest (RF), this study integrated multisource influencing factors to generate two daily precipitation products with high spatial resolution: RF1 and RF2. The two daily precipitation products were input to the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) model to simulate daily runoff changes in the Xinjiang River basin. Finally, this study assessed the contributions of RF1 and RF2 to the improvement of GPM’s hydrologic applicability. The results show that both RF1 and RF2 improved the accuracy and distribution details of GPM data. RF2 exhibited a higher correlation and lower error, whereas RF1 manifested superior performance in detecting precipitation events. The RF1-simulated runoff curves resembled GPM-derived curves, showing significant improvements. RF2 corrected partial GPM’s overestimates and more accurately revealed the peak values of real flow curves in some periods. However, the uneven distribution of monitoring stations affected RF2’s prediction in complex terrain areas, limiting its simulation accuracy. Overall, both RF1 and RF2 can effectively reflect daily precipitation changes in the Xinjiang River basin, improving GPM’s hydrologic applicability to varying degrees.

Key wordsdownscaling    GPM    random forest    runoff simulation    Xinjiang River basin
收稿日期: 2023-11-14      出版日期: 2025-05-09
ZTFLH:  P412.27  
基金资助:江苏省研究生科研与实践创新项目“鄱阳湖流域卫星降水产品降尺度研究与径流模拟”(KYCX22-1130)
通讯作者: 史 岚(1978-),女,副教授,主要从事3S技术与气象应用研究。Email: sl_nim@163.com
作者简介: 陈多妍(1999-),女,硕士研究生,主要从事气象与GIS应用研究。Email: dotz910@163.com
引用本文:   
陈多妍, 史岚. 基于随机森林的降水产品降尺度及其水文适用性评估[J]. 自然资源遥感, 2025, 37(2): 66-79.
CHEN Duoyan, SHI Lan. Downscaling of precipitation products based on the random forest and assessment of their hydrologic applicability. Remote Sensing for Natural Resources, 2025, 37(2): 66-79.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023352      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/66
Fig.1  信江流域概况
计算模块 计算方法 方法原理与输入参数
产流计算 SCS曲线数法 根据累积降雨量、土地利用方式、土壤类型以及前期土壤含水量等条件模拟计算产流量,由土壤最大蓄水能力与流域特征的关系引入参数CN
直接径流计算 斯奈德单位线法 通过收集某集水区的降雨和径流资料,算出单位线,单位线峰现时间与流量滞时tlag有关
基流计算 指数衰退法 假设集水区任意时刻的基流量和初始基流存在某种关系,由流量成分取值衰减常数k
河道汇流计算 马斯京根法 将马斯京根槽蓄曲线方程和水量平衡方程联合演算出马斯京根流量演算方程,需要输入蓄量常数K和流量比重因子x
Tab.1  HEC-HMS模型计算方法选择
地形因子 海拔 坡度 地形起伏度 地形切割度 地形位置指数 地形曲率
海拔 1.000**① 0.718** 0.819** 0.858** 0.314** 0.544**
坡度 1.000** 0.920** 0.886** 0.011** 0.614**
地形起伏度 1.000** 0.958** 0.044** 0.670**
地形切割度 1.000** 0.088** 0.614**
地形位置指数 1.000** -0.079**
地形曲率 1.000**
Tab.2  各地形因子的相关系数
Fig.2  GPM,RF1及RF2汛期各月平均降水量空间分布
Fig.3  不同雨量等级下降水预测值分布散点图
产品 精度评价指标 日降水
事件
探测
能力
评价
指标
CC MAE/mm RMSE/mm POD FAR ACC
GPM 0.696 6.833 14.894 0.772 0.448 0.523
RF1 0.717 6.766 14.141 0.970 0.438 0.564
RF2 0.779 5.480 11.991 0.871 0.451 0.530
Tab.3  不同产品日降水精度与降水事件探测能力评价
Fig.4  日降水产品分月精度比较
Fig.5  GPM,RF1和RF2各评价指标空间分布
Fig.6  子流域划分与气象站控制范围示意图
场次 参数 GPM RF1 RF2 场次 参数 GPM RF1 RF2


20180410 RNS 0.697 0.689 0.499 20190423 RNS 0.806 0.851 0.546
RCC 0.892 0.870 0.754 RCC 0.915 0.938 0.854
20180511 RNS 0.870 0.909 0.751 20190516 RNS 0.509 0.643 -0.459
RCC 0.943 0.959 0.937 RCC 0.877 0.904 0.855
20180526 RNS 0.427 0.495 0.304 20190531 RNS 0.703 0.791 0.822
RCC 0.764 0.779 0.874 RCC 0.887 0.898 0.907
20180610 RNS 0.414 0.433 0.631 20190617 RNS 0.218 0.363 -0.196
RCC 0.836 0.836 0.936 RCC 0.800 0.854 0.724
20180630 RNS 0.644 0.667 0.367 20190703 RNS 0.377 0.435 0.523
RCC 0.965 0.970 0.883 RCC 0.788 0.790 0.746
20190401 RNS 0.712 0.788 -0.117
RCC 0.910 0.923 0.848


20200418 RNS -0.169 0.062 -0.658 20200608 RNS 0.289 0.773 0.110
RCC 0.727 0.709 0.746 RCC 0.956 0.972 0.947
20200509 RNS -3.681 -1.988 -4.469 20200629 RNS 0.600 0.610 0.618
RCC 0.163 0.312 0.166 RCC 0.879 0.872 0.867
20200524 RNS 0.608 0.712 0.893
RCC 0.977 0.963 0.989
Tab.4  弋阳站GPM,RF1,RF2径流模拟精度评估
Fig.7  模拟结果与实测结果对比(RF2较GPM模拟较好场次)
Fig.8  模拟结果与实测结果对比(RF2较GPM模拟较差场次)
[1] 李媛媛, 宁少尉, 丁伟, 等. 最新GPM降水数据在黄河流域的精度评估[J]. 国土资源遥感, 2019, 31(1):164-170.doi:10.6046/gtzyyg/2019.01.22.
Li Y Y, Ning S W, Ding W, et al. The evaluation of latest GPM-Era precipitation data in Yellow River basin[J]. Remote Sensing for Land and Resources, 2019, 31(1):164-170.doi:10.6046/gtzyyg/2019.01.22.
[2] Mohammed I N, Bolten J D, Srinivasan R, et al. Improved hydrological decision support system for the lower Mekong River Basin using satellite-based earth observations[J]. Remote Sensing, 2018, 10(6):885.
doi: 10.3390/rs10060885 pmid: 29938116
[3] 刘冀, 孙周亮, 张特, 等. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11):2558-2567.
Liu J, Sun Z L, Zhang T, et al. Hydrological evaluations of runoff simulations based on multiple satellite precipitation products over the Huayuan catchment[J]. Resources and Environment in the Yangtze Basin, 2018, 27(11):2558-2567.
[4] 王书霞, 张利平, 喻笑勇, 等. 遥感降水产品在澜沧江流域径流模拟中的适用性研究[J]. 长江流域资源与环境, 2019, 28(6):1365-1374.
Wang S X, Zhang L P, Yu X Y, et al. Application of remote sensing precipitation products in runoff simulation over the Lancang River Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6):1365-1374.
[5] 蔡洁连. 基于VIC模型的卫星降水产品在赣江流域的应用研究[D]. 南宁: 南宁师范大学, 2021.
Cai L J. Research on the applicability of satellite precipitation products based on VIC model in Ganjiang basin[D]. Nanning: Nanning Normal University, 2021.
[6] Ji H Y, Peng D Z, Gu Y, et al. Evaluation of multiple satellite precipitation products and their potential utilities in the Yarlung Zangbo River Basin[J]. Scientific Reports, 2022, 12:13334.
doi: 10.1038/s41598-022-17551-y pmid: 35922539
[7] Lyu A F, Qi S S, Wang G S. Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China[J]. Science of the Total Environment, 2022, 802:149831.
[8] 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7):1126-1139.
doi: 10.18306/dlkxjz.2020.07.006
Sun H, Su F G. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J]. Progress in Geography, 2020, 39(7):1126-1139.
doi: 10.18306/dlkxjz.2020.07.006
[9] 范宏翔, 何菡丹, 徐力刚, 等. 基于长短记忆模型的鄱阳湖流域径流模拟及其演变的归因分析[J]. 湖泊科学, 2021, 33(3):866-878.
Fan H X, He H D, Xu L G, et al. Simulation and attribution analysis based on the long-short-term-memory network for detecting the dominant cause of runoff variation in the Lake Poyang Basin[J]. Journal of Lake Sciences, 2021, 33(3) :866-878.
[10] 张帆, 张永勇, 陈俊旭, 等. 多种机器学习模型对不同洪水类型特征指标模拟效果评估[J]. 地理科学进展, 2022, 41(7):1239-1250.
doi: 10.18306/dlkxjz.2022.07.008
Zhang F, Zhang Y Y, Chen J X, et al. Performance of multiple machine learning model simulation of process characteristic indicators of different flood types[J]. Progress in Geography, 2022, 41(7):1239-1250.
doi: 10.18306/dlkxjz.2022.07.008
[11] 范田亿, 张翔, 黄兵, 等. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4):209-218.doi:10.6046/zrzyyg.2020395.
Fan T Y, Zhang X, Huang B, et al. Downscaling of TRMM precipitation products and its application in Xiangjiang River Basin[J]. Remote Sensing for Natural Resources, 2021, 33(4):209-218.doi:10.6046/zrzyyg.2020395.
[12] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4):111-120.doi:10.6046/zrzyyg.2021009.
Du Y, Wang D Y, Wang D G. Spatial downscaling of GPM precipitation products:A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):111-120.doi:10.6046/zrzyyg.2021009.
[13] Ma Z, Tan X, Yang Y, et al. The first comparisons of IMERG and the downscaled results based on IMERG in hydrological utility over the Ganjiang River Basin[J]. Water, 2018, 10(10):1392.
[14] 闵心怡, 杨传国, 李莹, 等. 基于改进的湿润地区站点与卫星降雨数据融合的洪水预报精度分析[J]. 水电能源科学, 2020, 38(04):1-5.
Min X Y, Yang C G, Li Y, et al. Accuracy analysis of flood forecasting based on the fusion data of satellite and guage rainfalls in humid region[J]. Water Resources and Power, 2020, 38(4):1-5.
[15] 田晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11):2307-2318.
doi: 10.11821/dlxb202011003
Tian J, Guo S L, Liu D D, et al. Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin[J]. Acta Geographica Sinica, 2020, 75(11):2307-2318.
doi: 10.11821/dlxb202011003
[16] 孙桂凯, 魏义熊, 王亚芳, 等. IMERG卫星降水产品融合校准及其水文效用[J]. 水电能源科学, 2021, 39(11):23-26.
Sun G K, Wei Y X, Wang Y F, et al. Fusion Calibration of precipitation data by IMERG satellite and its hydrological applicability[J]. Water Resources and Power, 2021, 39(11):23-26.
[17] Zhao Y M, Xu K, Dong N P, et al. Optimally integrating multi-source products for improving long series precipitation precision by using machine learning methods[J]. Journal of Hydrology, 2022, 609:127707.
[18] Cheng X, Ma X X, Wang W S, et al. Application of HEC-HMS parameter regionalization in small watershed of hilly area[J]. Water Resources Management, 2021, 35(6):1961-1976.
[19] Fanta S S, Sime C H. Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed,Ethiopia[J]. Sustainable Water Resources Management, 2022, 8(1):1-16.
[20] 廖如婷, 胡珊珊, 杜龙刚, 等. 基于HEC-HMS模型的温榆河流域水文模拟[J]. 南水北调与水利科技, 2018, 16(6):15-20.
Liao R T, Hu S S, Du L G, et al. Hydrological simulation of Wenyu River Basin based on HEC-HMS model[J]. South-to-North Water Transfers and Water Science and Technology, 2018, 16(6):15-20.
[21] Fang L, Huang J L, Cai J T, et al. Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China[J]. Journal of Hydrology, 2022, 612:128091.
[22] 李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9):1164-1170.
Li X H, Zhang Q, Shao M. Spatio-temporal distribution of precipitation in Poyang Lake basin based on TRMM data and precision evaluation[J]. Progress in Geography, 2012, 31(9):1164-1170.
doi: 10.11820/dlkxjz.2012.09.007
[23] 曾冰茹, 李云良, 谭志强. 鄱阳湖流域水文连通性的影响因素和环境效应[J]. 长江流域资源与环境, 2022, 31(12):2718-2728.
Zeng B R, Li Y L, Tan Z Q. Influential factors and environmental effects of hydrological connectivity in the Poyang Lake catchment[J]. Resources and Environment in the Yangtze Basin, 2022, 31(12):2718-2728.
[24] 田智慧, 尹传鑫, 王晓蕾. 鄱阳湖流域生态环境动态评估及驱动因子分析[J]. 环境科学, 2023, 44(2):816-827.
Tian Z H, Yin C X, Wang X L. Dynamic monitoring and driving factors analysis of ecological environment quality in Poyang Lake basin[J]. Environmental Science, 2023, 44(2):816-827.
[25] 徐新良. 中国月度植被指数(NDVI)空间分布数据集[EB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统(http:/www.resdc.cn/DOI), 2018.
Xu X L. Monthly vegetation index spatial distribution dataset of China[EB/OL]. Geographic Remote Sensing Ecological Network Platform(www.gisrs.cn), 2018.
[26] Didan K. MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V006[EB/OL]. NASA EOSDIS Land Processes DAAC, 2015.
[27] 欧立健, 余锦华, 钟校尧, 等. 海表温度的增暖趋势和自然变率对长江中下游夏季极端降水强度的影响[J]. 大气科学, 2022. 46(6):1595-1606.
Ou L J, Yu J H, Zhong X Y, et al. Impacts of the SST warming trend and natural variability on the summer extreme precipitation intensity of the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(6):1595-1606.
[28] 陈玥, 王爱慧, 支蓉, 等. 中国东部降水中大尺度环流和局地陆-气相互作用的贡献:河南“21·7”强降水事件特征影响因子探究[J]. 大气科学, 2023, 47(2):551-566.
Chen Y, Wang A H, Zhi R, et al. Contributions of large-scale circulation and local land-atmosphere interaction to precipitation in eastern China:Investigation on influencing factors of the July 2021 heavy precipitation event in Henan Province[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(2):551-566.
[29] 潘锋, 何大明, 曹杰, 等. 夏季怒江流域水汽输送多支特征及对降水影响[J]. 地理学报, 2023, 78(1):87-100.
doi: 10.11821/dlxb202301006
Pan F, He D M, Cao J, et al. Multiple branches of water vapor transport over the Nujiang River Basin in summer and its impact on precipitation[J]. Acta Geographica Sinica, 2023, 78(1):87-100.
doi: 10.11821/dlxb202301006
[30] Arfanad A, Zhang W C, Zhang Z J, et al. Reconstructing high-resolution gridded precipitation data using an improved downscaling approach over the high altitude mountain regions of Upper Indus basin (UIB)[J]. Science of the Total Environment, 2021, 784:147140.
[31] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4):105-113.doi:10.6046/zrzyyg.2022270.
Li X T, Shi L, Chen D Y. Research on downscaling of GPM precipitation products based on deep learning in Fujian-Zhejiang-Jiangxi[J]. Remote Sensing for Natural Resources, 2023, 35(4):105-113.doi:10.6046/zrzyyg.2022270.
[32] 薛智暄, 张丽, 王新军, 等. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4):583-593.
doi: 10.13866/j.azr.2023.04.07
Xue Z X, Zhang L, Wang X J, et al. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert[J]. Arid Zone Research, 2023, 40(4):583-593.
doi: 10.13866/j.azr.2023.04.07
[33] 郭远智, 李许红. 基于随机森林模型的黄河流域城市建设用地结构时空演化及其驱动机制研究[J]. 地理科学进展, 2023, 42(1):12-26.
doi: 10.18306/dlkxjz.2023.01.002
Guo Y Z, Li X H. Spatiotemporal changes of urban construction land structure and driving mechanism in the Yellow River Basin based on random forest model[J]. Progress in Geography, 2023, 42(1):12-26.
doi: 10.18306/dlkxjz.2023.01.002
[34] 李娜娜, 吴骅, 栾庆祖. 城市地表温度空间降尺度研究——以北京市为例[J]. 遥感学报, 2021, 25(8):1808-1820.
Li N N, Wu H, Luan Q Z. Land surface temperature downscaling in urban area:A case study of Beijing[J]. National Remote Sensing Bulletin, 2021, 25(8):1808-1820.
[35] 曾岁康, 雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7):1305-1318.
doi: 10.11821/dlxb201907003
Zeng S K, Yong B. Evaluation of the GPM-based IMERG and GSMaP precipitation estimates over the Sichuan region[J]. Acta Geographica Sinica, 2019, 74(7):1305-1318.
doi: 10.11821/dlxb201907003
[36] 彭振华, 李艳忠, 余文君, 等. 遥感降水产品在中国不同气候区的适用性研究[J]. 地球信息科学学报, 2021, 23(7):1296-1311.
doi: 10.12082/dqxxkx.2021.200348
Peng Z H, Li Y Z, Yu W J, et al. Research on the applicability of remote sensing precipitation products in different climatic regions of China[J]. Journal of Geo-Information Science, 2021, 23(7):1296-1311.
[37] 曹旖丹. 气候变化下长白山二道松花江流域降雨径流模拟及预测[D]. 长春: 吉林大学, 2021.
Cao Y D. Simulation and prediction of rainfall and runoff in the Erdao Songhua River basin of Changbai Mountain under climate change[D]. Changchun: Jilin University, 2021.
[38] 原文林, 付磊, 高倩雨. 基于HEC-HMS模型的山洪灾害临界雨量研究[J]. 人民黄河, 2019, 41(8):22-27,31.
Yuan W L, Fu L, Gao Q Y. Research on rainfall threshold of flash flood based on HEC-HMS model[J]. Yellow River, 2019, 41(8):22-27,31.
[39] Belay Y Y, Gouday Y A, Alemnew H N. Comparison of HEC-HMS hydrologic model for estimation of runoff computation techniques as a design input:Case of Middle Awash multi-purpose dam,Ethiopia[J]. Applied Water Science, 2022, 12(10):237.
[40] 张利平, 覃光华, 杨玲玲, 等. IMERG和GSMaP卫星降水产品在岷江流域的适用性评价[J]. 水文, 2022, 42(6):93-98.
Zhang L P, Qin G H, Yang L L, et al. Evaluation of the IMERG and GSMaP precipitation products over Minjiang Watershed[J]. Journal of China Hydrology, 2022, 42(6):93-98.
[1] 邓建明, 姚航, 付波霖, 顾森, 唐婕, 甘园园. 基于GEE和时序主被动影像的广西北部湾红树林时空动态监测研究[J]. 自然资源遥感, 2025, 37(2): 235-245.
[2] 牛全福, 雷姣姣, 刘博, 王浩, 张瑞珍, 王刚. Sentinel-1/2影像在兰州北山削山造地范围识别中的应用[J]. 自然资源遥感, 2025, 37(1): 142-151.
[3] 李钰彬, 王宗明, 赵传朋, 贾明明, 任春颖, 毛德华, 于皓. 辽河口盐地碱蓬时空动态遥感监测及其识别机理研究[J]. 自然资源遥感, 2025, 37(1): 195-203.
[4] 范莹琳, 杜松, 赵岳, 邱景智, 杜晓川, 张玉峰, 丁晏, 宋思彤, 车巧慧. 基于随机森林算法的煤矸石山信息提取[J]. 自然资源遥感, 2025, 37(1): 54-61.
[5] 颜佳楠, 陈虹, 张雨泽, 吴骅. 全天候逐时百米尺度地表温度重建方法[J]. 自然资源遥感, 2024, 36(3): 72-80.
[6] 杨辰飞, 吴田军, 王长鹏, 杨丽娟, 骆剑承, 张新. 基于Copula函数的千米尺度综合干旱指数构建与应用——以重庆市为例[J]. 自然资源遥感, 2024, 36(3): 117-127.
[7] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
[8] 冯倩, 张佳华, 邓帆, 吴贞江, 赵恩灵, 郑培鑫, 韩杨. 基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究[J]. 自然资源遥感, 2024, 36(2): 39-49.
[9] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[10] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[11] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[12] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[13] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[14] 钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测[J]. 自然资源遥感, 2023, 35(4): 178-185.
[15] 何苏玲, 贺增红, 潘继亚, 王金亮. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4): 201-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发