Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 200-208    DOI: 10.6046/zrzyyg.2020393
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
中外超大城市热岛效应变化对比研究
王美雅1(), 徐涵秋2()
1.闽南师范大学历史地理学院,漳州 363000
2.福州大学环境与资源学院,福州大学遥感信息工程研究所,福建省水土流失遥感监测评估与灾害防治重点实验室,福州 350116
A comparative study on the changes in heat island effect in Chinese and foreign megacities
WANG Meiya1(), XU Hanqiu2()
1. School of History and Geography, Minnan Normal University, Zhangzhou 363000, China
2. College of Environment and Resources, Institute of Remote Sensing Information Engineering, Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion and Disaster Prevention, Fuzhou University, Fuzhou 350116, China
全文: PDF(5151 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

快速城市化形成超大城市导致地表覆盖快速变化,改变地表热平衡,使得城市热环境剧烈变化。以1990s,2000s和2015年这3个时期为研究时相,选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,多时相Landsat遥感影像为主要数据源,进行城市热环境变化对比及成因分析。利用普适性单通道算法反演各城市地表温度,计算城市热岛比例指数(urban heat island ratio index,URI)来定量对比研究期间各城市热岛效应时空变化。城市热岛效应对比研究结果表明,1990s—2015年间,北京、上海和东京的URI呈总体上升趋势,广州、伦敦和纽约的URI呈总体下降趋势。到2015年,东京城市热岛效应最严重(URI=0.630),其次是北京、上海、纽约和广州,分别为0.617,0.594,0.555和0.530,伦敦的URI指数最小为0.433。整个研究期间,北京、上海、广州和东京等超大城市均有较大幅度扩张,建成区面积均增加500 km2以上,不透水面面积增加370 km2以上,不断向外蔓延并占用生态用地,加上城市组团间无法形成良好的绿化分隔带,造成城市地表温度等级大幅上升,尤其是新城区热岛效应增强显著; 而在老城区通过旧城改造,热环境得到显著改善。伦敦和纽约城市无明显扩张,地表温度变化幅度较小。在今后城市建设中,需注重生态理念,优化城市地表空间格局,提高生态用地效益。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王美雅
徐涵秋
关键词 超大城市城市热环境热岛比例指数遥感地表景观格局    
Abstract

Megacities have formed due to rapid urbanization. As a result, the surface cover has rapidly changed, which changes the heat balance of Earth's surface and induces drastic changes in the thermal environment in megacities. With six typical megacities (Beijing, Shanghai, Guangzhou, London, New York, and Tokyo) across the world as study objects and multi-temporal Landsat remote-sensing images of the 1990s, the 2000s, and 2015 as the main data sources, this study compares the changes in the thermal environment among the six megacities and analyzes their causes. For each of the megacities, the surface temperature was determined through reversion using the universal single-channel algorithm and the urban heat island ratio index (URI) was calculated to quantitatively compare the spatial-temporal changes in the heat island effect during the study period. The results are as follows. From the 1990s to 2015, the URI values of Beijing, Shanghai, and Tokyo showed an overall upward trend, and while that of Guangzhou, London, and New York showed an overall downward trend. In 2015, Tokyo suffered the most serious urban heat island effect (URI=0.630), followed by Beijing, Shanghai, New York, and Guangzhou successively, of which the URI values were 0.617, 0.594, 0.555, and 0.530, respectively. In contrast, London had the smallest URI of 0.433. The megacities such as Beijing, Shanghai, Guangzhou, and Tokyo all considerably expanded throughout the study period. In these cities, the built-up areas and impervious surfaces increased by more than 500 km2 and more than 370 km2 on average, respectively in terms of area. They continuously spread outwards and occupied ecological land. Furthermore, green belts can not be formed between urban clusters. All these caused a significant increase in urban surface temperature and especially the significant aggravation of the heat island effect in new urban areas. In comparison, the thermal environment in the old urban areas was significantly improved through urban reconstruction. London and New York were not significantly expanded, where the surface temperature slightly changed. Therefore, it is necessary to pay attention to ecological philosophy, optimize the pattern of urban surface space, and improve the efficiency of ecological land in future urban construction.

Key wordsmegacities    urban heat environment    urban heat island ratio index    remote sensing    surface landscape pattern
收稿日期: 2020-12-08      出版日期: 2021-12-23
ZTFLH:  TP79  
基金资助:国家重点研发计划专项课题“大尺度全球变化数据产品快速生成方法”(2016YFA0600302);福建省创新战略研究项目“厦漳泉都市区生态质量遥感评价与地表空间格局优化研究”(2020R0155);闽南师范大学校长基金项目“全球气候变化视角下的城市热环境遥感动态监测”(KJ19013)
通讯作者: 徐涵秋
作者简介: 王美雅(1991-),女,博士,副教授,主要从事环境与资源遥感研究。Email: 286097145@qq.com
引用本文:   
王美雅, 徐涵秋. 中外超大城市热岛效应变化对比研究[J]. 自然资源遥感, 2021, 33(4): 200-208.
WANG Meiya, XU Hanqiu. A comparative study on the changes in heat island effect in Chinese and foreign megacities. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020393      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/200
Fig.1  研究区Landsat 遥感影像
城市 传感器类型 影像获取日期 城市 传感器类型 影像获取日期


北京
TM 1989-08-14

伦敦
TM 1990-08-03
TM 1999-08-10 ETM+ 1999-09-05
OLI/TIRS 2015-08-22 OLI/TIRS 2015-10-02


上海
TM 1989-08-11

纽约
TM 1991-08-17
TM 2002-07-30 TM 2001-07-27
OLI/TIRS 2015-08-03 OLI/TIRS 2015-08-26


广州
TM 1991-09-14

东京
TM 1987-07-24
TM 2003-10-07 ETM+ 2001-09-24
OLI/TIRS 2015-10-18 OLI/TIRS 2015-10-09
Tab.1  研究选用的Landsat影像信息
Fig.2  6个超大城市建成区地表温度等级分布
LST等级 北京 上海
1990s 2000s 2015年 1990s 2000s 2015年
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
低温(1) 0.02 0.00 0.09 0.01 0.03 0.00 0.94 0.29 1.57 0.19 18.20 0.95
较低温(2) 0.09 0.02 5.15 0.73 7.88 0.64 12.31 3.73 13.41 1.62 35.20 1.83
次中温(3) 41.52 8.13 45.57 6.47 46.43 3.75 14.47 4.39 40.51 4.88 139.34 7.26
中温(4) 82.03 16.06 158.17 22.47 184.35 14.87 61.19 18.55 207.84 25.06 286.39 14.92
次高温(5) 256.32 50.18 327.66 46.55 682.14 55.03 107.08 32.46 422.45 50.94 805.33 41.97
高温(6) 124.62 24.40 154.69 21.97 287.86 23.22 122.24 37.06 123.27 14.86 494.04 25.75
特高温(7) 6.17 1.21 12.60 1.79 30.87 2.49 11.63 3.52 20.33 2.45 140.34 7.31
建成区面
积/km2
510.78 703.92 1 239.56 329.88 829.37 1 918.93
URI 0.580 0.539 0.617 0.585 0.516 0.594
LST等级 广州 伦敦
1990s 2000s 2015年 1990s 2000s 2015年
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
低温(1) 0.00 0.00 0.11 0.04 7.88 1.18 9.78 0.80 22.27 1.82 8.86 0.72
较低温(2) 2.11 1.87 7.14 2.32 17.60 2.63 20.47 1.68 26.48 2.17 33.25 2.70
次中温(3) 6.53 5.79 15.59 5.06 52.38 7.82 102.26 8.39 97.72 7.99 121.32 9.87
中温(4) 18.49 16.39 46.35 15.05 123.37 18.42 370.25 30.38 398.43 32.58 362.63 29.49
次高温(5) 51.57 45.72 132.80 43.11 336.41 50.24 481.19 39.48 490.36 40.10 513.84 41.79
高温(6) 31.12 27.59 94.44 30.66 122.01 18.22 221.91 18.21 162.46 13.29 169.06 13.75
特高温(7) 2.98 2.64 11.58 3.76 9.90 1.48 12.94 1.06 25.17 2.06 20.53 1.67
建成区面
积/km2
112.80 308.01 669.66 1 218.90 1 222.88 1 229.48
URI 0.589 0.608 0.530 0.449 0.421 0.433
LST等级 纽约 东京
1990s 2000s 2015年 1990s 2000s 2015年
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
低温(1) 20.20 2.12 22.22 2.32 20.78 2.16 16.41 0.69 3.92 0.13 0.97 0.03
较低温(2) 19.41 2.04 18.18 1.90 24.13 2.50 49.43 2.09 60.96 2.09 41.57 1.31
次中温(3) 37.80 3.96 46.57 4.86 70.60 7.32 102.15 4.32 71.75 2.46 190.71 6.03
中温(4) 79.16 8.30 117.96 12.31 170.02 17.64 353.45 14.96 400.64 13.72 406.91 12.87
次高温(5) 522.58 54.78 432.98 45.17 349.22 36.23 1 151.84 48.76 1 114.60 38.16 1 208.33 38.23
高温(6) 255.08 26.74 300.69 31.37 306.32 31.78 678.44 28.72 1 218.34 41.71 1 279.83 40.49
特高温(7) 19.60 2.05 19.73 2.06 22.63 2.35 10.47 0.44 97.64 3.34 31.71 1.00
建成区面
积/km2
953.95 958.50 963.90 2 362.24 2 920.65 3 160.92
URI 0.641 0.612 0.555 0.599 0.664 0.630
Tab.2  地表温度等级和URI统计
Fig.3  研究区地表温度等级变化分布示意图

变化情况

变化等级
北京 上海 广州
面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/%
降低 -4 0.75 0.03 14.27 0.90 0.03 8.76 0.56 0.03 19.02
-3 8.23 0.30 8.49 0.26 5.55 0.32
-2 56.88 2.05 29.87 0.91 50.72 2.90
-1 330.45 11.90 247.83 7.56 276.00 15.77
不变 0 916.48 33.01 33.01 628.06 19.17 19.17 467.18 26.69 26.69
升高 1 834.16 30.04 52.72 807.13 24.63 72.07 416.13 23.77 54.29
2 503.33 18.13 653.39 19.94 301.23 17.21
3 114.77 4.13 550.19 16.79 168.48 9.63
4 11.16 0.40 265.36 8.10 55.48 3.17
5 0.30 0.01 84.80 2.59 8.60 0.49
6 0.00 0.00 0.67 0.02 0.37 0.02
合计 2 776.52 100.00 100.00 3 276.69 100.00 100.00 1 750.33 100.00 100.00
伦敦 纽约 东京
变化等级 面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/%
降低 -4 8.45 0.34 26.47 0.42 0.02 28.04 2.65 0.05 14.12
-3 19.78 0.79 14.35 0.61 15.79 0.26
-2 74.93 2.99 107.57 4.59 231.44 3.86
-1 559.35 22.35 534.30 22.82 596.23 9.95
不变 0 1 275.04 50.94 50.94 1 324.00 56.55 56.55 3 027.80 50.53 50.53
升高 1 466.34 18.63 22.59 334.88 14.31 15.41 1 398.82 23.34 35.35
2 69.20 2.76 21.70 0.93 553.93 9.24
3 26.23 1.05 3.21 0.14 139.32 2.33
4 3.48 0.14 0.63 0.03 22.49 0.38
5 0.34 0.01 0.06 0.00 3.54 0.06
6 0.07 0.00 0.00 0.00 0.01 0.00
合计 2 503.20 100.00 100.00 2 341.11 100.00 5 992.02 100.00 100.00
Tab.3  研究区地表温度等级变化统计
时间 地点
(a)北京大
兴亦庄片区
(b)上海宝
山南翔片区
(c)广州黄
埔萝岗片区
(d)东京
千叶地区
(e)东京
滨海副中心
(f)北京朝
阳国贸片区
(g)上海静
安苏河湾区域
(h)广州海珠
桥南广场地区
1990s
(B4(R),
B3(G),
B2(B))
2015年
(B5(R),
B4(G),
B3(B))
1990s—
2015年
地表温度
等级变化
图例
Tab.4  北京、上海、广州和东京地表温度等级跃迁典型区
北京 上海 广州
土地覆
盖类型
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
植被 -736.06 -28.3 -1 401.19 -53.9 -336.23 -14.0
不透水面 785.24 30.2 1 408.95 54.2 379.21 15.8
建成区 728.78 28.0 1 589.05 61.1 556.86 23.2
伦敦 纽约 东京
土地覆
盖类型
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
植被 -25.42 -1.0 -5.05 -0.2 -765.30 -27.3
不透水面 29.04 1.2 21.13 0.9 815.20 29.1
建成区 10.49 0.4 9.94 0.4 798.68 28.5
Tab.5  6个超大城市建成区和土地覆盖面积及比例变化
[1] 匡文慧, 杨天荣, 刘爱琳, 等. 城市地表覆盖结构组分与热环境调控模型(EcoCity)研究——以北京城市为例[J]. 中国科学(地球科学), 2017,47(7):847-859.
Kuang W H, Yang T R, Liu A L, et al. An EcoCity model for regulating urban land cover structure and thermal environment:Taking Beijing as an example[J]. Science China Earth Sciences, 2017,47(7):847-859.
[2] Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index(RSEI)[J]. Ecological Indicators, 2018,93:730-740.
doi: 10.1016/j.ecolind.2018.05.055
[3] Croft-White M V, Cvetkovic M, Rokitnicki-Wojcik D, et al. A shoreline divided:Twelve-year water quality and land cover trends in Lake Ontario coastal wetlands[J]. Journal of Great Lakes Research, 2017,43(6):1005-1015.
doi: 10.1016/j.jglr.2017.08.003
[4] United Nations. State of the world population 2014-the power of 1.8 billion:Adolescents,youth and the transformation of the future[EB/OL]. https://reliefweb.int/report/world/state-world-population-2014-power-18-billion-adolescents-youth-and-transformation.
[5] Meng F, Shan B Y, Liu M. Remote-sensing evaluation of the relationship between urban heat islands and urban biophysical descriptors in Jinan,China[J]. Journal of Applied Remote Sensing, 2014,8(1):083693.
doi: 10.1117/1.JRS.8.083693
[6] 葛荣凤, 王京丽, 张力小, 等. 北京市城市化进程中热环境响应[J]. 生态学报, 2016,36(19):6040-6049.
Ge R F, Wang J L, Zhang L X, et al. Impacts of urbanization on the urban thermal environment in Beijing[J]. Acta Ecologica Sinica, 2016,36(19):6040-6049.
[7] Feyisa G L, Meilby H, Jenerette G D, et al. Locally optimized separability enhancement indices for urban land cover mapping:Exploring thermal environmental consequences of rapid urbanization in Addis Ababa,Ethiopia[J]. Remote Sensing of Environment, 2016,175:14-31.
doi: 10.1016/j.rse.2015.12.026
[8] Weng Q H, Lu D S. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation and Geoinformation, 2008,10(1):68-83.
doi: 10.1016/j.jag.2007.05.002
[9] Zheng B J, Myint S W, Fan C. Spatial configuration of anthropogenic land cover impacts on urban warming[J]. Landscape and Urban Planning, 2014,130:104-111.
doi: 10.1016/j.landurbplan.2014.07.001
[10] Chen Y J, Yu S X. Impacts of urban landscape patterns on urban thermal variations in Guangzhou,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,54:65-71.
doi: 10.1016/j.jag.2016.09.007
[11] Kotharkar R, Bagade A. Evaluating urban heat island in the critical local climate zones of an Indian city[J]. Landscape and Urban Planning, 2018,169:92-104.
doi: 10.1016/j.landurbplan.2017.08.009
[12] 中国国家统计局. 中国统计年鉴(2015年)[M]. 北京: 中国统计出版社, 2016.
National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2016.
[13] United Nations. World population prospects:The 2018 revision[EB/OL]. https://population.un.org/wup/Publications/.
[14] 中国住房和城乡建设部. 中国城市建设统计年鉴2014[M]. 北京: 中国统计出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. China urban construction statistical yearbook[M]. Beijing: China Statistics Press, 2015.
[15] Van de Voorde T, Jacquet W, Canters F. Mapping form and function in urban areas:An approach based on urban metrics and continuous impervious surface data[J]. Landscape and Urban Planning, 2011,102(3):143-155.
doi: 10.1016/j.landurbplan.2011.03.017
[16] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009,113(5):893-903.
doi: 10.1016/j.rse.2009.01.007
[17] Charvz Jr P S. Image-based atmospheric corrections-revisited and revised[J]. Photogrammetric Engineering and Remote Sensing, 1996,62(9):1025-1036.
[18] Jiménez-Muñoz J C, Cristobal J, Sobrino J A, et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(1):339-349.
doi: 10.1109/TGRS.2008.2007125
[19] Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research Atmospheres, 2003,108(D22):4688.
[20] Jiménez-Muñoz J C, Sobrino J A, Skoković D, et al. Land surface temperature retrieval methods from Landsat8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(10):1840-1843.
doi: 10.1109/LGRS.2014.2312032
[21] 徐涵秋, 陈本清. 不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J]. 遥感技术与应用, 2003,18(3):129-133.
Xu H Q, Chen B Q. An image processing technique for the study of urban heat island changes using different seasonal remote sensing data[J]. Remote Sensing Technology and Application, 2003,18(3):129-133.
[22] 国家环保部. 生态环境状况评价技术规范(发布稿)[S]. 北京: 中国标准出版社, 2015.
Ministry of Ecology and Environment the People's Republic of China. Technical criterion for ecosystem status evaluation[S]. Beijing: Standards Press of China, 2015.
[23] 住房城乡建设部. 城市生态建设环境绩效评估导则(试行)[M]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Guidelines for performance assessment of urban ecological construction[M]. Beijing: China Architecture and Building Press, 2015.
[24] 樊智宇, 詹庆明, 刘慧民, 等. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019,21(2):226-235.
doi: 10.12082/dqxxkx.2018.180495
Fan Z Y, Zhan Q M, Liu H M, et al. Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan[J]. Journal of Geo-Information Science, 2019,21(2):226-235.
[25] Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324
[26] Du P J, Samat A, Waske B, et al. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:38-53.
doi: 10.1016/j.isprsjprs.2015.03.002
[27] Padmanaban R, Bhowmik A K, Cabral P. A remote sensing approach to environmental monitoring in a reclaimed mine area[J]. ISPRS International Journal of Geo-Information, 2017,6(12):401.
doi: 10.3390/ijgi6120401
[28] Schneider A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach[J]. Remote Sensing of Environment, 2012,124:689-704.
doi: 10.1016/j.rse.2012.06.006
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[3] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[4] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[5] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[6] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[7] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[8] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发