Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 10-20    DOI: 10.6046/zrzyyg.2023027
  综述 本期目录 | 过刊浏览 | 高级检索 |
多标签遥感图像分类研究现状与展望
林聃1(), 李秋岑1, 陈志奎1,2(), 钟芳明1,2, 李丽方1
1.大连理工大学软件学院,大连 116620
2.大连理工大学辽宁省泛在网络与服务软件重点实验室,大连 116620
Research advances and challenges in multi-label classification of remote sensing images
LIN Dan1(), LI Qiucen1, CHEN Zhikui1,2(), ZHONG Fangming1,2, LI Lifang1
1. School of Software Technology, Dalian University of Technology, Dalian 116620, China
2. Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian 116620, China
全文: PDF(5870 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

多标签遥感图像分类是遥感分析领域的基础研究任务之一,解析给定的遥感图像并识别其中的类别语义,可以为下游计算机视觉任务提供重要的技术基础; 由于遥感图像空间分辨率不断提升,众多遥感对象以不同规模、颜色、形状分布于图像的各个区域,为遥感图像多标签分类任务带来了严峻挑战。该文聚焦于遥感领域的多标签图像分类研究,对该问题的前沿研究进展进行总结分析。首先,阐述多标签遥感图像分类任务的问题定义,并对该研究问题中常用的多标签图像数据集和模型评估指标进行归纳介绍; 进而,对该领域的前沿进展进行系统性的介绍,深入剖析多标签遥感图像分类过程中的2个关键任务——遥感图像特征提取和标签特征提取; 最后,针对遥感图像特性,分析了该任务当前存在的挑战和问题,并对未来研究方向进行展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林聃
李秋岑
陈志奎
钟芳明
李丽方
关键词 遥感图像多标签遥感图像分类多标签分类遥感    
Abstract

Multi-label classification of remote sensing images plays a fundamental role in remote sensing analysis. Parsing given remote sensing images to identify semantic labels can provide a significant technical basis for downstream computer vision tasks. With the continuously improved spatial resolution of remote sensing images, many remote sensing objects with different scales, colors, and shapes are distributed in various zones of images, posing high challenges to the multi-label classification task of remote sensing images. This study focuses on the multi-label classification of images in the field of remote sensing, summarizing and analyzing the frontier research advances in this regard. First of all, this study expounded the problem definition for the multi-label classification task of remote sensing images while generalizing the commonly used multi-label image datasets and model evaluation indicators. Furthermore, by systematically presenting the frontier progress in this field, this study delved into two key tasks in the multi-label classification of remote sensing images: feature extraction of remote sensing images and label feature extraction. Finally, based on the characteristics of remote sensing images, this study analyzed the current challenges of multi-label classification as well as subsequent research orientation.

Key wordsremote sensing image    multi-label classification of remote sensing images    multi-label classification    remote sensing
收稿日期: 2023-02-13      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“面向土地利用现状判读的小样本跨模态学习模型”(62076047)
通讯作者: 陈志奎(1968-),男,博士,教授,主要从事大数据计算及其在土壤、海洋资源遥感的应用研究。Email: zkchen@dlut.edu.cn
作者简介: 林 聃(1992-),女,博士,博士后,主要从事计算机视觉与遥感图像学习研究。Email: dan.lin@ntu.edu.sg
引用本文:   
林聃, 李秋岑, 陈志奎, 钟芳明, 李丽方. 多标签遥感图像分类研究现状与展望[J]. 自然资源遥感, 2024, 36(2): 10-20.
LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023027      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/10
Fig.1  单标签与多标签分类任务遥感图像样本对比
数据集 图像总数 类别数 训练数 测试数
UCM 2 100 17 1 680 420
AID 3 000 17 2 400 600
DFC15 3 342 8 2 674 668
MultiScene 100 000 36 93 000 7000
MLRSNet 109 161 46 54 581 54 580
BigEarthNet 590 326 19 415 471 103 868
Tab.1  Numbers of images and classes in multi-label remote sensing image datasets(张)
Fig.2  3种遥感图像分类示例
Fig.3  多标签遥感图像分类研究进展结构
[1] 陈春芳, 边小勇, 费雄君, 等. 弱监督多示例子概念学习的遥感场景分类[J]. 小型微型计算机系统, 2022, 43(1):76-83.
Chen C F, Bian X Y, Fei X J, et al. Weakly supervised multi-instance sub-concept learning for remote sensing scene classification[J]. Journal of Chinese Computer Systems, 2022, 43(1):76-83.
[2] Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
[3] Yuan X H, Shi J F, Gu L C. A review of deep learning methods for semantic segmentation of remote sensing imagery[J]. Expert Systems with Applications, 2021, 169:114417.
[4] 赵泽亚, 杨迪, 梁小虎, 等. 海量遥感数据的存储迁移策略研究[J]. 信息工程大学学报, 2020, 21(1):115-119.
Zhao Z Y, Yang D, Liang X H, et al. Study on storage and migration strategy of massive remote sensing data[J]. Journal of Information Engineering University, 2020, 21(1):115-119.
[5] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3):114-120.doi:10.6046/zrzyyg.2020301.
Bai J L, Wang Z Q, Yan H T. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3):114-120.doi:10.6046/zrzyyg.2020301.
[6] 涂兵, 张晓飞, 张国云, 等. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1):22-32.doi:10.6046/gtzyyg.2019.01.04.
Tu B, Zhang X F, Zhang G Y, et al. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land and Resources, 2019, 31(1):22-32.doi:10.6046/gtzyyg.2019.01.04.
[7] Wang T, Zhang H S, Lin H, et al. Textural- spectral feature-based species classification of mangroves in Mai Po Nature Reserve from WorldView-3 imagery[J]. Remote Sensing, 2015, 8(1):24-35.
[8] Zhou W, Song Y Q, Pan Z K, et al. Classification of urban construction land with WorldView-2 remote sensing image based on classification and regression tree algorithm[C]// 2017 IEEE International Conference on Computational Science and Engineering(CSE) and IEEE International Conference on Embedded and Ubiquitous Computing(EUC), 2017:277-283.
[9] Hamidishad N, Cesar R Jr. Object-based method for identifying new constructions around water reservoirs:Preliminary results[C]// Anais Estendidos da Conference on Graphics,Patterns and Images(SIBGRAPI), 2019, 32:172-175.
[10] Yessou H, Sumbul G, Demir B. A comparative study of deep learning loss functions for multi-label remote sensing image classification[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2020:1349-1352.
[11] Chaudhuri B, Demir B, Chaudhuri S, et al. Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):1144-1158.
[12] Xia G S, Hu J W, Hu F, et al. AID:A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7),3965-3981.
[13] Hua Y, Mou L, Jin P, et al. MultiScene:A large-scale dataset and benchmark for multiscene recognition in single aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021(60):5010213.
[14] Qi X, Zhu P, Wang Y, et al. MLRSNet:A multi-label high spatial resolution remote sensing dataset for semantic scene understanding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:337-350.
[15] Sumbul G, Charfuelan M, Demir B, et al. Bigearthnet:A large-scale benchmark archive for remote sensing image understanding[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:5901-5904.
[16] Sumbul G, Wall A D, Kreuziger T, et al. BigEarthNet-MM:A large scale multi modal multi label benchmark archive for remote sensing image classification and retrieval[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(3):174-180.
[17] Cheng G, Xie X, Han J, et al. Remote sensing image scene classification meets deep learning:Challenges,methods,benchmarks,and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756.
[18] Blaschke T, Strobl J. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS[J]. Interfacing Remote Sensing and GIS, 2001, 6(1):12-17.
[19] Chen T, Wang Z, Li G, et al. Recurrent attentional reinforcement learning for multi-label image recognition[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1).
[20] 曾黎, 徐慧颖, 陈晓昊, 等. 深度学习在高分遥感图像场景分类中的应用[J]. 计算机工程与应用, 2021, 57(10):57-64.
doi: 10.3778/j.issn.1002-8331.2101-0427
Zeng L, Xu H Y, Chen X H, et al. Application of deep learning in scene classificationof high-resolution remote sensing images[J]. Computer Engineering and Applications, 2021, 57(10):57-64.
[21] 蔡之灵, 翁谦, 叶少珍, 等. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
Cai Z L, Weng Q, Ye S Z, et al. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land and Resources, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
[22] Zeggada A, Melgani F, Bazi Y. A deep learning approach to UAV image multilabeling[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):694-698.
[23] Shendryk I, Rist Y, Lucas R, et al. Deep learning:A new approach for multi-label scene classification in planetscope and Sentinel-2 imagery[C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2018:1116-1119.
[24] Karalas K, Tsagkatakisg G, Zervakism M, et al. Land classification using remotely sensed data:Going multi-label[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54:3548-3563.
[25] Melo A, Paulheim H. Local and global feature selection for multi-label classification with binary relevance[J]. Artificial Intelligence Review, 2019, 51(1):33-60.
[26] Fdez-Díaz M, Fdez-Díaz L, Mena D, et al. Improving the ε-approximate algorithm for probabilistic classifier chains[J]. Knowledge and Information Systems, 2020, 62(7):2709-2738.
[27] Zhou C L, Yuan J S. Multi-label learning of part detectors for heavily occluded pedestrian detection[C]// Proceedings of the IEEE International Conference on Computer Vision(ICCV). 2017:3486-3495.
[28] Tsagkatakis G, Tsakalides P. Deep feature learning for hyperspectral image classification and land cover estimation[J]. Environmental Science,Mathematics, 2016, 6:435-446.
[29] Cevikalp H, Benligiray B, Gerek O N. Semi-supervised robust deep neural networks for multi-label image classification[J]. Pattern Recognition, 2020, 100:107164.
[30] Zhang T, Yan W, Li J, et al. Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7):2854-2867.
[31] Wang C, Zhang P, Zhang Y, et al. A multi-label hyperspectral image classification method with deep learning features[C]// Proceedings of the International Conference on Internet Multimedia Computing and Service, 2016:127-131.
[32] Koda S, Zeggada A, Melgani F, et al. Spatial and structured SVM for multilabel image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5948-5960.
[33] 华远盛. 深度学习在多标签遥感影像分类中应用的研究现状[J]. 科学技术创新, 2020(1):44-45.
Hua Y S. Research status of application of deep learning in multi-label remote sensing image classification[J]. Scientific and Technological Innovation, 2020(1):44-45.
[34] Hua Y, Mou L, Zhu X X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149:188-199.
doi: 10.1016/j.isprsjprs.2019.01.015 pmid: 31007387
[35] Wang X, Xiong X, Ning C. Multi-label remote sensing scene classification using multi-bag integration[J]. IEEE Access, 2019(7):120399-120410.
[36] Zhang J L, Zhang J Y, Dai T, et al. Exploring weighted dual graph regularized non-negative matrix tri-factorization based collaborative filtering framework for multi-label annotation of remote sensing images[J]. Remote Sensing, 2019, 11(8):922.
[37] Khan N, Chaudhuri U, Banerjee B, et al. Graph convolutional network for multi-label VHR remote sensing scene recognition[J]. Neurocomputing, 2019, 357:36-46.
[38] Hua Y S, Lobry S., Mou L C, et al. Learning multi-label aerial image classification under label noise:A regularization approach using word embeddings[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2020,525-528.
[39] Hao Q B, Li S T, Kang X D. Multilabel sample augmentation-based hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58:4263-4278.
[40] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification[C]// ACM Sigspatial International Conference on Advances in Geographic Information Systems. 2010:270-279.
[41] Song Z L, Zhang J Q. Image registration approach with scale-invariant feature transform algorithm and tangent-crossing-point feature[J]. Journal of Electronic Imaging, 2020, 29:023010.
[42] 姜亚楠, 张欣, 张春雷, 等. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3):36-44.doi:10.6046/zrzyyg.2020303.
Jiang Y N, Zhang X, Zhang C L, et al. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3):36-44.doi:10.6046/zrzyyg.2020303.
[43] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12).
[44] Hinton G E, Simon O, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18:1527-1554.
doi: 10.1162/neco.2006.18.7.1527 pmid: 16764513
[45] Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313:504-507.
doi: 10.1126/science.1127647 pmid: 16873662
[46] Fang S, Zhang K, Wang Y B, et al. Multi-label hyperspectral classification with discriminative features[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021:3233-3236.
[47] Zhang M L, Zhou Z H. ML-KNN:A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048.
[48] Wang J, Yang Y, Mao J H, et al. CNN-RNN:A unified framework for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2285-2294.
[49] Li Y, Song Y L, Luo J B. Improving pairwise ranking for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:3617-3625.
[50] Yan Y F, Huang S J. Cost-effective active learning for hierarchical multi-label classification[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018:2962-2968.
[51] Li Y S, Chen R X, Zhang Y J, et al. Multi-label remote sensing image scene classification by combining a convolutional neural network and a graph neural network[J]. Remote Sensing, 2020, 12(23):4003.
[52] Aksoy A K, Ravanbakhsh M, Kreuziger T, et al. A novel uncertainty-aware collaborative learning method for remote sensing image classification under multi-label noise[J]. CoRR,vol. vol.abs/2105.05496,2021.
[53] El-Khamy S E, Al-Kabbany A, El-Bana S. MLRS-CNN-DWTPL:A new enhanced multi-label remote sensing scene classification using deep neural networks with wavelet pooling layers[C]// 2021 International Telecommunications Conference(ITC-Egypt), 2021:1-5.
[54] Ji J C, Jing W P, Chen G S, et al. Multi-label remote sensing image classification with latent semantic dependencies[J]. Remote Sensing, 2020, 12:1110.
[55] Sumbul G, Demir B. A deep multi-attention driven approach for multi-label remote sensing image classification[J]. IEEE Access, 2020, 8:95934-95946.
[56] Yang M H, Liu H, Gao L, et al. DCA-GCN:A dual-branching channel attention and graph convolution network for multi-label remote sensing image classification[J]. Journal of Applied Remote Sensing, 2021, 15:044519.
[57] Diao Y, Chen J Z, Qian Y. Multi-label remote sensing image classification with deformable convolutions and graph neural networks[C]// IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, 2020:521-524.
[58] Huang S J, Gao W, Zhou Z H. Fast multi-instance multi-label learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41:2614-2627.
[59] Zhou Z H, Zhang M L. Multi-instance multi-label learning with application to scene classification[C]// Advances in Neural Information Processing Systems, 2006:1609-1616.
[60] Mohamed D. Multi-instance multi-label with application to high resolution remote sensing images[J]. Journal of Physics:Conference Series, 2018, 18:614-623.
[61] Aksoy A K, Ravanbakhsh M, Demir B. Multi-label noise robust collaborative learning for remote sensing image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022:1-14.
[62] Aksoy A K, Ravanbakhsh M, Kreuziger T, et al. A consensual collaborative learning method for remote sensing image classification under noisy multi-labels[C]// 2021 IEEE International Conference on Image Processing(ICIP), 2021:3842-3846.
[63] Burgert T, Ravanbakhsh M, Demir B. On the effects of different types of label noise in multi-label remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5413713.
[64] Li Q, Qiao M Y, Bian W, et al. Conditional graphical lasso for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2977-2986.
[65] Hua Y S, Mou L C, Zhu X X. Label relation inference for multi-label aerial image classification[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2019:5244-5247.
[66] Chen J Z, Qian Y. Hierarchical multi-label ship recognition in remote sensing images using label relation graphs[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2021:4968-4971.
[67] Zhang J J, Wu Q, Shen C H, et al. Multi-label image classification with regional latent semantic dependencies[J]. IEEE Transactions on Multimedia, 2018, 20(10):2801-2813.
[68] Zhu F, Li H S, Ouyang W L, et al. Learning spatial regularization with image-level supervisions for multi-label image classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2017:2027-2036.
[69] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. arXiv.(2016-09-09) [2023-03-27]https://arxiv.org/abs/1609.02907.
[70] Wang Y, He D L, Li F, et al. Multi-label classification with label graph superimposing[EB/OL]. arXiv.(2019-11-21) [2023-03-27]https://arxiv.org/abs/1911.09243.
[71] Li Y S, Chen R X, Zhang Y J, et al. A CNN-GCN framework for multi-label aerial image scene classification[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2020:1353-1356.
[72] 杨敏航, 陈龙, 刘慧, 等. 基于图卷积网络的多标签遥感图像分类[J]. 计算机应用研究, 2021, 38(11):3439-3445.
Yang M H, Chen L, Liu H, et al. Multi-label remote sensing image classification based on graph convolutional network[J]. Application Research of Computer, 2021, 38(11):3439-3445.
[73] Lin D, Lin J Z, Zhao L, et al. Multi-label aerial image classification with a concept attention graph neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5602112.
[74] Lin D, Lin J, Zhao L, et al. Multilabel aerial image classification with unsupervised domain adaptation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5609613.
[1] 和海霞, 李博. 青海大通“8·18”山洪灾害特征及风险分析[J]. 自然资源遥感, 2024, 36(2): 135-141.
[2] 刘稼丰, 张文凯, 杜晓敏, 冀欣阳, 杨金中, 范景辉, 孙禧勇, 佟晶. 1976—2020年黄河入海口滩区水体演变过程及淹没风险识别[J]. 自然资源遥感, 2024, 36(2): 151-159.
[3] 宋奇, 高小红, 宋玉婷, 黎巧丽, 陈真, 李润祥, 张昊, 才桑洁. 基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例[J]. 自然资源遥感, 2024, 36(2): 160-172.
[4] 高昇, 陈富龙, 时丕龙, 周伟, 朱猛, 骆艳松, 杨青霞, 王琴. 九寨沟生物圈保护区大场景植被健康遥感精细监测与诠析——以长海为例[J]. 自然资源遥感, 2024, 36(2): 188-197.
[5] 邢宇, 王静雅, 杨金中, 陈栋, 杜晓敏, 郭靖凯, 宋丽聪. 全国废弃露天矿山采矿用地分布状况与存在问题[J]. 自然资源遥感, 2024, 36(2): 21-26.
[6] 李威洋, 史海静, 聂玮廷, 杨鑫源. 基于地表参数变化的延河流域地表温度时空演变分析[J]. 自然资源遥感, 2024, 36(2): 229-238.
[7] 马晓雪, 焦润成, 曹颖, 南赟, 王晟宇, 郭学飞, 赵丹凝, 闫驰, 倪璇. 重大工程建设中地质灾害综合遥感监测技术方法应用——以北京2022冬奥会延庆赛区为例[J]. 自然资源遥感, 2024, 36(2): 248-256.
[8] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[9] 赵彬如, 牛思文, 王力彦, 杨晓彤, 焦红波, 王子珂. 面向海岛海岸带区域的高分遥感影像智能化色彩增强方法[J]. 自然资源遥感, 2024, 36(2): 70-79.
[10] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[11] 蒋瑞瑞, 甘甫平, 郭艺, 闫柏琨. 土壤水分多源卫星遥感联合反演研究进展[J]. 自然资源遥感, 2024, 36(1): 1-13.
[12] 刘晓亮, 王志华, 邢江河, 周睿, 杨晓梅, 刘岳明, 张俊瑶, 孟丹. 融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例[J]. 自然资源遥感, 2024, 36(1): 103-109.
[13] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[14] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[15] 陆妍玲, 黄娅琦, 周俊芬, 王杰, 韦晶闪. 基于夜光遥感数据的广西县域农村多维脱贫分析[J]. 自然资源遥感, 2024, 36(1): 169-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发