Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 50-59    DOI: 10.6046/zrzyyg.2023052
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种基于YOLOv5的高分辨率遥感影像目标检测方法
宋爽爽1(), 肖开斐1, 刘昭华1(), 曾昭亮2
1.江西理工大学土木与测绘工程学院,赣州 341000
2.中国气象科学研究院灾害天气国家重点实验室,北京 100081
A YOLOv5-based target detection method using high-resolution remote sensing images
SONG Shuangshuang1(), XIAO Kaifei1, LIU Zhaohua1(), ZENG Zhaoliang2
1. School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
全文: PDF(19607 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高分辨率遥感图像在拍摄过程中包含了丰富的数据信息,使得目标与背景之间的差异减小,导致在检测目标时精度达不到所需要求,降低了目标检测的性能。基于YOLO深度学习算法,结合端到端坐标注意力(coordinate attention, CA)和轻量级网络模块GhostConv设计了一种轻量级网络模型GC-YOLOv5。CA沿水平和垂直方向分别对每个通道进行编码,使得注意力机制模块能够同时捕获具有精确位置信息的远程空间交互,并帮助网络更准确地定位感兴趣的目标。使用GhostConv模块代替原有的普通卷积模块(convolutional-batchnormal-SiLu,CBS),降低特征通道融合过程中的参数数量,减小最优模型的大小。使用公开的NWPU-VHR-10数据集进行了实验并在RSOD数据集上验证了模型的稳健性。结果表明,在NWPU-VHR-10数据集上的检测精度达到了96.5%,召回率达到了96.4%,mAP达到了97.7%。在RSOD数据集上也取得较好的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋爽爽
肖开斐
刘昭华
曾昭亮
关键词 深度学习遥感图像目标检测YOLOv5    
Abstract

High-resolution remote sensing images contain rich data and information, which reduce the difference between the target and the background, resulting in substandard detection accuracy and reduced target detection performance. Based on the deep learning algorithm You Only Look Once (YOLO), this study designed a lightweight network model GC-YOLOv5 by combining end-to-end coordinate attention (CA) and the lightweight network module GhostConv. The CA was employed to encode channels along the horizontal and vertical directions, enabling the attention mechanism module to simultaneously capture remote spatial interactions with precise location information and helping the network locate targets of interest more accurately. The original ordinary convolutional module convolutional-batchnormal-SiLu (CBS) was replaced by the GhostConv module, reducing the number of parameters in the feature channel fusion process and the size of the optimal model. Experiments were conducted on the GC-YOLOv5 using the publicly available NWPU-VHR-10 dataset, with the robustness of the model verified on the RSOD dataset. The results show that GC-YOLOv5 yielded a detection accuracy of 96.5% on the NWPU-VHR-10 dataset, with a recall rate of 96.4% and mAP of 97.7%. Moreover, GC-YOLOv5 achieved satisfactory results on the RSOD dataset.

Key wordsdeep learning    remote sensing image    target detection    YOLOv5
收稿日期: 2023-03-08      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于多源数据融合的全南极太阳总辐射估算及其变化机制”(42306270)
通讯作者: 刘昭华(1977-),男,副教授,主要从事测量数据处理、资源环境遥感、数字摄影测量和遥感图像处理等方面的研究。Email: 9120040026@jxust.edu.cn
作者简介: 宋爽爽(1998-),女,硕士研究生,主要研究方向为遥感图像处理。Email: sssn1109@163.com
引用本文:   
宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023052      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/50
Fig.1  方法流程图
Fig.2  改进的网络结构
Fig.3  CA运算结构
Fig.4  普通卷积运算和GhostConv卷积模块运算
Fig.5  NWPU-VHR-10数据集和RSOD数据集样例图
平台 配置
脚本语言 Python3.7.15
深度学习框架 Torch1.12.1+cu113
GPU类型 Tesla T4
NVIDIA NVIDIA-SMI 460.32.03
CUDA版本 CUDA Version:11.2
Tab.1  实验环境配置
参数 配置
神经网络优化器 SGD
批次大小 16
学习率 0.01
动量参数 0.937
权重衰减 0.000 5
训练轮数 200
Tab.2  实验训练参数
Fig.6  精度和mAP@0.5结果对比图
模型 精度/% 召回率/% mAP@0.5/% 参数数量/106 权重文件数量/MB FPS/(幅·s-1)
YOLOv5 93.1 92.5 95 12.34 24.6 40.65
YOLOv5-CA 92.5 95.6 95.6 12.36 25.9 50.76
YOLOv5-Ghost 93.4 91.7 93.7 9.67 19.5 47.62
GC-YOLOv5 96.5 96.4 97.7 11.37 20.5 46.51
Tab.3  方法性能测试实验结果
模型 精度/
%
召回
率/%
mAP@0.5/% FPS/(幅·s-1)
Faster-RCNN 91.8 93.8
YOLOv5 93.1 92.5 95 40.65
GC-YOLOv5 96.5 96.4 97.7 46.51
Tab.4  不同方法在NWPU-VHR-10数据集上的性能
Fig.7  NWPU-VHR-10数据集检测结果样例
图像类别 真实标签 Faster-RCNN YOLOv5 GC-YOLOv5
飞机 13 13 13 13
网球场 4 4 4 4
操场 1 1 1 1
汽车 0 0 0 1
棒球场 0 1 0 0
Tab.5  NWPU-VHR-10数据集中不同算法的检测结果与真实标签对比
模型 精度/% 召回率/% mAP@0.5/% FPS/(幅· s - 1)
Faster-RCNN 91.8 89.8 -- --
YOLOv5 94.0 86.0 88.7 64.93
GC-YOLOv5 93.4 90.5 92.3 64.93
Tab.6  不同算法在RSOD数据集上的性能
Fig.8-1  RSOD数据集检测结果样例
Fig.8-2  RSOD数据集检测结果样例
图像类别 真实标签 Faster-RCNN YOLOv5 GC-YOLOv5
飞机 10 10 10 10
立交桥 1 2 1 1
Tab.7  RSOD数据集中不同算法的检测结果与真实标签对比
[1] Fang X L, Hu F, Yang M, et al. Small object detection in remote sensing images based on super-resolution[J]. Pattern Recognition Letters, 2022, 153:107-112.
[2] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
[3] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).IEEE, 2015:1440-1448.
[4] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2016:779-788.
[6] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:6517-6525.
[7] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J/OL]. ArXiv, 2018(2018-4-8). https://arxiv.org/abs/1804.02767.
[8] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J/OL]. arXiv, 2022(2022-7-6). http://arxiv.org/abs/2207.02696.
[9] Jiang P Y, Ergu D J, Liu F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199:1066-1073.
[10] Liu W, Anguelov D, Erhan D, et al. SSD:single shot MultiBox detector[C]// Computer Vision-ECCV 2016. Springer International Publishing, 2016:21-37.
[11] Lamane M, Tabaa M, Klilou A. Classification of targets detected by mmWave radar using YOLOv5[J]. Procedia Computer Science, 2022, 203:426-431.
[12] Puliti S, Astrup R. Automatic detection of snow breakage at single tree level using YOLOv5 applied to UAV imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112:102946.
[13] Li S W, Gu X Y, Xu X R, et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm[J]. Construction and Building Materials, 2021, 273:121949.
[14] Wang Y, Bashir S M A, Khan M, et al. Remote sensing image super-resolution and object detection:Benchmark and state of the art[J]. Expert Systems with Applications, 2022, 197:116793.
[15] Qu Z F, Zhu F Z, Qi C X. Remote sensing image target detection:Improvement of the YOLOv3 model with auxiliary networks[J]. Remote Sensing, 2021, 13(19):3908.
[16] Qi J T, Liu X N, Liu K, et al. An improved YOLOv5 model based on visual attention mechanism:Application to recognition of tomato virus disease[J]. Computers and Electronics in Agriculture, 2022, 194:106780.
[17] Bao W X, Du X, Wang N, et al. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images[J]. Remote Sensing, 2022, 14(20):5176.
[18] Chen W, Gao L, Li X Y, et al. Lightweight convolutional neural network with knowledge distillation for cervical cells classification[J]. Biomedical Signal Processing and Control, 2022, 71:103177.
[19] Yao J, Qi J M, Zhang J, et al. A real-time detection algorithm for kiwifruit defects based on YOLOv5[J]. Electronics, 2021, 10(14):1711.
[20] Han K, Wang Y H, Tian Q, et al. GhostNet:More features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:1577-1586.
[21] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2021:13708-13717.
[22] Cheng G, Han J W, Zhou P C, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98:119-132.
[23] Cheng G, Han J W. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.
[24] Long Y, Gong Y P, Xiao Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2486-2498.
[25] Jocher G, Chaurasia A, Stoken A, et al. Ultralytics/YOLOv5:V6.2-YOLOv5 classification models,apple M1,reproducibility,clearML and deci.ai integrations[Z]. Zenodo, 2022.
[26] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE, 2018:7132-7141.
[27] Woo S H Y, Park J C, Lee J Y, et al. CBAM:Convolutional block attention module[C]// European Conference on Computer Vision.Springer, 2018:3-19.
[1] 林聃, 李秋岑, 陈志奎, 钟芳明, 李丽方. 多标签遥感图像分类研究现状与展望[J]. 自然资源遥感, 2024, 36(2): 10-20.
[2] 李婉悦, 娄德波, 王成辉, 刘欢, 张长青, 范莹琳, 杜晓川. 基于改进U-Net网络的花岗伟晶岩信息提取方法[J]. 自然资源遥感, 2024, 36(2): 89-96.
[3] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[4] 刘宇佳, 谢诗哲, 杜阳, 严瑾, 南燕云, 温中凯. 结合空间语义注意力的二段式遥感图像修复网络[J]. 自然资源遥感, 2024, 36(1): 58-66.
[5] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[6] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[7] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[8] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[9] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[10] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[11] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[12] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[13] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[14] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[15] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发