Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 259-266    DOI: 10.6046/zrzyyg.2023111
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
金沙江滑坡群InSAR探测与形变因素分析
武德宏1(), 郝利娜1(), 严丽华1, 唐烽顺1, 郑光2
1.成都理工大学地球科学学院,成都 610059
2.地质灾害防治与地质环境保护国家重点实验室,成都 610059
InSAR-based detection and deformation factor analysis of landslide clusters in the Jinsha River
WU Dehong1(), HAO Lina1(), YAN Lihua1, TANG Fengshun1, ZHENG Guang2
1. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, China
全文: PDF(5822 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

金沙江流域是中国典型地质灾害高发区,为精准辨识金沙江流域潜在滑坡隐患,利用差分干涉测量短基线集时序分析技术(small baseline subset interferometric synthetic aperture Radar,SBAS-InSAR)对Sentinel-1A卫星升降轨数据进行处理,从2个不同探测方向对金沙江白格滑坡及其下游约100 km区域进行滑坡早期识别和形变监测。研究结果显示:①升降轨卫星联合探测能有效减少几何畸变干扰,识别出长期蠕变隐患点;②Sentinel-1A升轨视线(line-of-sight,LOS)向形变速率为-142~80 mm/a,降轨LOS向形变速率为-71~56 mm/a,结合光学遥感影像目视解译,探测出2个大型滑坡群,共计9个滑坡;③对色拉滑坡、沙东(雄巴)滑坡和尼马寺堆积体滑坡等3处典型滑坡进行地表形变特征分析,发现滑坡最大形变量与降雨量、河水径流量峰值相关,降雨和河水侵蚀冲刷是影响滑坡形变的重要因素。研究结果可为汛期流域性地质灾害预报预警及防治提供参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武德宏
郝利娜
严丽华
唐烽顺
郑光
关键词 金沙江滑坡隐患形变监测SBAS-InSAR    
Abstract

The Jinsha River basin is a typical area with a high incidence of geologic hazards in China. To accurately identify the potential landslide hazards in the basin, this study processed the data of Sentinel-1A’s ascending and descending orbits using the SBAS-InSAR technique. From two detection directions, it conducted early landslide identification and deformation monitoring of the Baige landslide on the bank of the Jinsha River and its lower reaches covering approximately 100 km. The results show that: ① The combined detection based on Sentinel-1A’s ascending and descending orbits effectively reduced the interference of geometric distortions, enabling the identification of long-term creep hazard sites; ② The deformation rates along the line-of-sight (LOS) of ascending and descending orbits ranged from -142 to 80 mm/a and -71 to 56 mm/a, respectively. Combined with the visual interpretation of optical remote sensing images, two large landslide clusters consisting of nine landslides were detected; ③ The analysis of surface deformation characteristics was conducted on three typical landslides: the Sela landslide, the Shadong (Xiongba) landslide, and the Nimasi talus slide. The analysis results reveal that the maximum deformation was associated with the peak rainfall and river runoff, which constituted the significant factors influencing landslide deformation. The results of this study serve as a reference for the prediction, early warning, prevention, and control of basin-scale geologic hazards in flood seasons.

Key wordsJinsha River    landslide hazard    deformation monitoring    SBAS-InSAR
收稿日期: 2023-04-26      出版日期: 2024-09-03
ZTFLH:  TP79  
  P237  
基金资助:国家重点研发计划项目“重大崩滑灾害危险源识别指标体系研究”(2021YFC3000401)
通讯作者: 郝利娜(1982-),女,博士,副教授,主要从事遥感地学应用研究。Email:hao_ln@qq.com
作者简介: 武德宏(1998-),男,硕士研究生,主要从事地质灾害识别研究。Email:1326259862@qq.com
引用本文:   
武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
WU Dehong, HAO Lina, YAN Lihua, TANG Fengshun, ZHENG Guang. InSAR-based detection and deformation factor analysis of landslide clusters in the Jinsha River. Remote Sensing for Natural Resources, 2024, 36(3): 259-266.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023111      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/259
Fig.1  研究区位置图和雷达卫星影像覆盖范围
参数 Sentinel-1A升轨 Sentinel-1A降轨
极化方式 VV VV
入射角/(°) 39.45 39.52
轨道号 99 33
幅号 1 280 488/493
所处波段 C C
重访周期/d 24 24
时间覆盖范围 20170902—20200724 20170921—20200719
影像数量/景 45 44
Tab.1  卫星SAR影像数据基本参数信息
Fig.2  SBAS-InSAR干涉组合时空基线
Fig.3  InSAR年均形变速率
Fig.4  色拉滑坡隐患解译及野外照片
Fig.5  沙东(雄巴)滑坡隐患解译及野外照片
Fig.6  尼马寺堆积体滑坡隐患解译及野外照片
Fig.7  重访周期形变波动曲线与降雨量、径流量的关系
Fig.8  相关系数图及独立样本T检验
[1] 黄润秋, 许强, 邓辉, 等. 中国典型灾难性滑坡[M]. 北京: 科学出版社, 2008:553.
Huang R Q, Xu Q, Deng H, et al. Catastrophic landslides in China[M]. Beijing: Science Press, 2008:553.
[2] Zhao C Y, Kang Y, Zhang Q, et al. Landslide identification and monitoring along the Jinsha River catchment (Wudongde reservoir area),China,using the InSAR method[J]. Remote Sensing, 2018, 10(7):993.
[3] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
[4] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[5] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
[6] 李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2):614-629.
Li X E, Zhou L, Su F Z, et al. Application of InSAR technology in landslide hazard:Progress and prospects[J]. National Remote Sensing Bulletin, 2021, 25(2):614-629.
[7] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11):1651-1659.
Xu Q. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1651-1659.
[8] Hussain S, Pan B, Afzal Z, et al. Landslide detection and inventory updating using the time-series InSAR approach along the Karakoram Highway,Northern Pakistan[J]. Scientific Reports, 2023, 13(1):7485.
doi: 10.1038/s41598-023-34030-0 pmid: 37161025
[9] 何秀凤. 变形监测新方法及其应用[M]. 北京: 科学出版社, 2007.
He X F. New deformation monitoring method and its application[M]. Beijing: Science Press, 2007.
[10] 刘莉, 张丽萍, 李萍, 等. 金沙江巧家巨型古滑坡发育特征及其形成条件[J]. 人民长江, 2022, 53(1):118-125.
Liu L, Zhang L P, Li P, et al. Development characteristics and forming conditions of Qiaojia giant ancient landslide in Jinsha River[J]. Yangtze River, 2022, 53(1):118-125.
[11] 陈剑, 崔之久, 陈瑞琛, 等. 金沙江上游特米古滑坡堰塞湖成因与演化[J]. 地学前缘, 2021, 28(2):85-93.
doi: 10.13745/j.esf.sf.2020.9.9
Chen J, Cui Z J, Chen R C, et al. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River[J]. Earth Science Frontiers, 2021, 28(2):85-93.
doi: 10.13745/j.esf.sf.2020.9.9
[12] Wang P, Chen J, Dai F, et al. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River,SE Tibetan Plateau:Implications to Holocene tectonic perturbations[J]. Geomorphology, 2014, 217:193-203.
[13] 董岳, 丁明涛, 李鑫泷, 等. 基于光学遥感像素偏移量的金沙江流域2018年白格滑坡演变过程[J]. 地球科学与环境学报, 2022, 44(6):1002-1015.
Dong Y, Ding M T, Li X L, et al. Evolution of the 2018 Baige landslides revealed by optical remote sensing pixel offsets in Jinsha River basin,China[J]. Journal of Earth Sciences and Environment, 2022, 44(6):1002-1015.
[14] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6):1534-1551.
Xu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology, 2018, 26(6):1534-1551.
[15] 戴可人, 张乐乐, 宋闯, 等. 青藏高原交通廊道沿线Sentinel-1影像几何畸变与升降轨适宜性定量分析[J]. 武汉大学学报(信息科学版), 2021, 46(10):1450-1460.
Dai K R, Zhang L L, Song C, et al. Quantitative analysis of Sentinel-1 imagery geometric distortion and their suitability along Qinghai-Tibet plateau traffic corridor[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1450-1460.
[16] 戴可人, 铁永波, 许强, 等. 高山峡谷区滑坡灾害隐患InSAR早期识别——以雅砻江中段为例[J]. 雷达学报, 2020, 9(3):554-568.
Dai K R, Tie Y B, Xu Q, et al. Early identification of potential landslide geohazards in alpine-canyon terrain based on SAR interferometry:A case study of the middle section of Yalong River[J]. Journal of Radars, 2020, 9(3):554-568.
[17] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7):967-979.
Li Z H, Song C, Yu C, et al. Application of satellite radar remote sensing to landslide detection and monitoring:challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979.
[18] 闫怡秋, 郭长宝, 张永双, 等. 基于SBAS-InSAR技术的西藏雄巴古滑坡变形特征[J]. 地质学报, 2021, 95(11):3556-3570.
Yan Y Q, Guo C B, Zhang Y S, et al. Study of the deformation characteristics of the Xiongba ancient landslide based on SBAS-InSAR method,Tibet,China[J]. Acta Geologica Sinica, 2021, 95(11):3556-3570.
[19] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12):2039-2049.
Zhang L, Liao M S, Dong J, et al. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry:A case study of Danba,Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049.
[20] Ran P, Li S D, Zhuo G C, et al. Early identification and influencing factors analysis of active landslides in mountainous areas of southwest China using SBAS-InSAR[J]. Sustainability, 2023, 15(5):4366.
[21] 孙倩, 胡俊, 陈小红. 多时相InSAR技术及其在滑坡监测中的关键问题分析[J]. 地理与地理信息科学, 2019, 35(3):37-45.
Sun Q, Hu J, Chen X H. Multi-temporal InSAR techniques and their challenges in the landslides monitoring[J]. Geography and Geo-Information Science, 2019, 35(3):37-45.
[22] 周定义, 左小清, 喜文飞, 等. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别[J]. 中国地质灾害与防治学报, 2022, 33(2):16-24.
Zhou D Y, Zuo X Q, Xi W F, et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2):16-24.
[23] 孙永彬, 张恩, 李启亮, 等. 金沙江下游永善段隐蔽性滑坡隐患综合遥感识别[J]. 工程科学与技术, 2023, 55(1):171-183.
Sun Y B, Zhang E, Li Q L, et al. Comprehensive remote sensing identification of hidden landslides in Yongshan section of lower Jinsha River[J]. Advanced Engineering Sciences, 2023, 55(1):171-183.
[24] 陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 2019, 44(9):1342-1354.
Lu H Y, Li W L, Xu Q, et al. Early detection of landslides in the upstream and downstream areas of the Baige landslide,the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9):1342-1354.
[25] 朱赛楠, 殷跃平, 王猛, 等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例[J]. 岩土工程学报, 2021, 43(4):688-697.
Zhu S N, Yin Y P, Wang M, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone:A case study of Sela landslide in Jinsha River,Tibet[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4):688-697.
[26] 李振洪, 张成龙, 陈博, 等. 一种基于多源遥感的滑坡防灾技术框架及其工程应用[J]. 地球科学, 2022, 47(6):1901-1916.
Li Z H, Zhang C L, Chen B, et al. A technical framework of landslide prevention based on multi-source remote sensing and its engineering application[J]. Earth Science, 2022, 47(6):1901-1916.
[27] Gou Y T, Zhang L, Chen Y, et al. Monitoring seasonal movement characteristics of the landslide based on time-series InSAR technology:The Cheyiping landslide case study,China[J]. Remote Sensing, 2022, 15(1):51.
[28] Wen N, Dai K R, Tomas R, et al. Revealing the time lag between slope stability and reservoir water fluctuation from InSAR observations and wavelet tools:A case study in Maoergai Reservoir (China)[J]. Giscience and Remote Sensing, 2023, 60(1):18.
[29] 代聪, 李为乐, 陆会燕, 等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版), 2021, 46(7):994-1002.
Dai C, Li W L, Lu H Y, et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):994-1002.
[30] Zhang G, Wang S Y, Chen Z W, et al. Landslide susceptibility evaluation integrating weight of evidence model and InSAR results,west of Hubei Province,China[J]. The Egyptian Journal of Remote Sensing and Space Science, 2023, 26(1):95-106.
[1] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[2] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[3] 金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
[4] 赵霞, 马新岩, 余虔, 王招冰. 高分辨率InSAR技术在北京大兴国际机场形变监测中的应用[J]. 自然资源遥感, 2024, 36(1): 49-57.
[5] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[6] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[7] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[8] 李柱, 范洪冬, 高彦涛, 许耀宗. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析[J]. 自然资源遥感, 2022, 34(3): 138-145.
[9] 麻学飞, 张双成, 惠文华, 许强. 山西省临汾市矿区地表形变InSAR大范围探测与监测[J]. 自然资源遥感, 2022, 34(3): 146-153.
[10] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[11] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[12] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[13] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[14] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
[15] 刘志敏, 李永生, 张景发, 罗毅, 刘斌. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(3): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发