Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 254-266    DOI: 10.6046/zrzyyg.2024381
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
2000—2020年中国植被时空变化格局及其对气候作用的滞后响应分析
许颖1(), 张润泽2, 郭兵2()
1.河南财经政法大学城乡规划学院,郑州 454000
2.山东理工大学建筑工程与空间信息学院,淄博 255000
Spatiotemporal variations of 2000—2020 vegetation in China and their time-lag responses to climate
XU Ying1(), ZHANG Runze2, GUO Bing2()
1. Henan University of Economics and Law,School of Urban and Rural Planning,Zhengzhou 454000,China
2. School of Civil Engineering and Geomatics,Shandong University of Technology,Zibo 255000,China
全文: PDF(10872 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 全球气候变化背景下,中国植被生态系统发生了深刻变化。然而,中国不同生态子区、不同历史时期植被生态演变机制如何,有何差异,亟须深入探索。该研究基于归一化植被指数(normalized differential vegetation index,NDVI)数据,采用重心模型、时滞分析、地理探测器和偏相关分析等方法对中国6大生态子区进行时空演变格局及驱动机制的分析。结果表明:①2000—2020年间,中国大陆地区植被覆盖度呈现出自东向西逐渐递减的趋势;②6大生态子区植被覆盖度均呈现增加趋势,其中中南地区增幅(变化斜率)最高,为0.003 9,华东地区增幅(变化斜率)最低,为0.002;③2000—2010年间,植被覆盖等级升高的面积占比为92%,2010—2020年间植被覆盖等级升高的面积占比为71%;④在全国范围内,栽培植被、灌丛与降水滞后性普遍为前1—3月,栽培植被、针叶林与气温滞后性普遍为当前月,阔叶林与气温滞后性普遍为前1—2月,不同地区不同植被类型滞后时间存在异质性;⑤东北、华北、西北、西南地区植被演变主导影响因子均为降水,华东地区植被演变主导影响因子为土地利用和国内生产总值(gross domestic product,GDP),而中南地区植被演变主导影响因子为降水、土地利用。研究成果可为不同生态区植被的修复和保护提供重要的数据支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许颖
张润泽
郭兵
关键词 NDVI植被覆盖度时滞效应重心地理探测器中国    
Abstract

Amid global changes,China’s vegetation ecosystem has undergone profound transformations. However,there is an urgent need to thoroughly explore the mechanisms underlying the ecological evolution of vegetation in different ecological subregions and historical periods,as well as their differences. Therefore,based on normalized difference vegetation index (NDVI) data,this study investigated the spatiotemporal evolution of vegetation across six major ecological subregions in China and its driving mechanisms using methods such as the gravity center model,lag analysis,geographical detectors,and partial correlation analysis. The results indicate that from 2000 to 2020,mainland China witnessed a decreasing trend in vegetation coverage from east to west. Vegetation coverage increased in all six ecological subregions,with the highest increase (slope of change) observed in the south-central part of China (0.003 9) and the lowest in eastern China (0.002). From 2000 to 2010,regions with increased vegetation coverage accounted for 92%,and this proportion dropped to 71% from 2010 to 2020. Heterogeneous lag times were observed across different vegetation types in varying regions. Specifically,cultivated vegetation and shrubland generally exhibited a 1 to 3-month lag in response to precipitation;cultivated vegetation and coniferous forests presented a lag limited to the current month in relation to temperature,and broadleaf forests generally displayed a 1 to 2-month lag in response to temperature. Precipitation is identified as the dominant factor driving vegetation changes in North China and the northeastern,northwestern,and southwestern parts of China. In eastern China,land use and gross domestic product (GDP) represent the primary driving force behind vegetation change. In the south-central part of China,both precipitation and land use serve as dominant factors. The results of this study can provide significant data support for vegetation restoration and protection in different ecological regions.

Key wordsnormalized difference vegetation index (NDVI)    vegetation coverage    time-lag effect    gravity center    geographical detector    China
收稿日期: 2024-11-27      出版日期: 2025-10-28
ZTFLH:  TP79  
基金资助:河南省科技攻关项目“融合航空影像和激光雷达点云豫西黄河流域切沟监测及体积预测模型研究”(242102321113);河南省高等学校重点科研项目“融合机载Lidar点云和航空影像的豫西黄河流域切沟监测及体积估算模型优化”(24B420001);国家自然科学基金项目“水-土-植耦合新视角下黄河三角洲盐渍化演变机理的跨尺度不变性与差异性研究”(42471329)
通讯作者: 郭 兵(1987-),男,博士,教授,主要研究方向为全球变化与土地退化。Email:guobingjl@163.com
作者简介: 许 颖(1986-),女,博士,讲师,主要研究方向为遥感数据处理与应用。Email:y_xu_lidar@huel.edu.cn
引用本文:   
许颖, 张润泽, 郭兵. 2000—2020年中国植被时空变化格局及其对气候作用的滞后响应分析[J]. 自然资源遥感, 2025, 37(5): 254-266.
XU Ying, ZHANG Runze, GUO Bing. Spatiotemporal variations of 2000—2020 vegetation in China and their time-lag responses to climate. Remote Sensing for Natural Resources, 2025, 37(5): 254-266.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024381      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/254
Fig.1  研究区概况(审图号:GS京(2025)1936号)
变化类型 F检验显著性水平 NDVI变化斜率
明显增加 p≤0.01 k≥0.001
略微增加 0.01<p≤0.05 k≥0.001
基本不变 p>0.05 -0.001<k<0.001
略微减少 0.01<p≤0.05 k≤-0.001
明显减少 p≤0.01 k≤-0.001
Tab.1  显著性分级
Fig.2  不同等级NDVI空间分布(审图号:GS京(2025)1936号)
Fig.3  不同区域NDVI年际变化
Fig.4  不同时期不同等级NDVI转移变化(审图号:GS京(2025)1936号)
Fig.5  不同植被类型滞后性空间分布(审图号:GS京(2025)1936号)
Fig.6  不同分区滞后性
Fig.7  交互因子
[1] 颜明, 贺莉, 王随继, 等. 基于NDVI的1982—2012年黄河流域多时间尺度植被覆盖变化[J]. 中国水土保持科学, 2018, 16(3):86-94.
Yan M, He L, Wang S J, et al. Changing trends of NDVI in the Yellow River Basin from 1982 to 2012 at different temporal scales[J]. Science of Soil and Water Conservation, 2018, 16(3):86-94.
[2] 王伟, 阿里木·赛买提, 吉力力·阿不都外力. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4):32-40.doi:10.6046/gtzyyg.2019.04.05.
Wang W, Alim S, Jilili A. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land and Resources, 2019, 31(4):32-40.doi:10.6046/gtzyyg.2019.04.05.
[3] 夏照华. 基于NDVI时间序列的植被动态变化研究[D]. 北京: 北京林业大学, 2007.
Xia Z H. The studies on dynamic of vegetation based on NDVI time series[D]. Beijing: Beijing Forestry University, 2007.
[4] 唐倩玉, 李远航, 胡孟然, 等. 太行山地区1973—2022年暴雨时空演变特征分析[J]. 信阳师范学院学报(自然科学版), 2024, 37(4):524-531.
Tang Q Y, Li Y H, Hu M R, et al. Analysis of the spatiotemporal variations in heavy rainfall events in the Taihang moutainous region from 1973 to 2022[J]. Journal of Xinyang Normal University (Natural Science Edition), 2024, 37(4):524-531.
[5] 鲁佳琪, 孟凡浩, 罗敏, 等. 黄河流域内蒙古段气象干旱与水文干旱变化对植被NDVI的影响[J]. 人民珠江, 2024, 45(10):51-64.
Lu J Q, Meng F H, Luo M, et al. Effect of meteorological and hydrological drought changes on vegetation NDVI in Inner Mongolia section of Yellow River Basin[J]. Pearl River, 2024, 45(10):51-64.
[6] 袁江龙, 赵宏慧, 刘晓煌, 等. 2000—2020年昆仑山植被覆盖度时空变化驱动力分析及生态评价[J]. 中国地质, 2024, 51(6):1822-1838.
Yuan J L, Zhao H H, Liu X H, et al. Driving force analysis and eco-logical assessment of spatiotemporal changes in vegetation cover in the Kunlun Mountains from 2000 to 2020[J]. Geology in China, 2024, 51(6):1822-1838.
[7] 胡仁杰, 陈璇黎, 陈金, 等. MODIS NDVI对高寒草甸草地生物量遥感估测饱和性评估研究——以青藏高原东缘为例[J]. 生态学报, 2024, 44(14):6357-6372.
Hu R J, Chen X L, Chen J, et al. MODIS NDVI saturation assessment of alpine meadow grassland biomass estimation using remote sensing:A case study in the eastern edge of the Qinghai Tibet Plateau[J]. Acta Ecologica Sinica, 2024, 44(14):6357-6372.
[8] 申子傲, 吴静, 李纯斌. 2000—2020年河西内陆河流域植被覆盖时空变化特征及其驱动力[J]. 中国沙漠, 2024, 44(3):119-127.
doi: 10.7522/j.issn.1000-694X.2023.00180
Shen Z A, Wu J, Li C B. Temporal and spatial changes of vegetation cover and its driving forces in the Hexi inland river basin from 2000 to 2020[J]. Journal of Desert Research, 2024, 44(3):119-127.
doi: 10.7522/j.issn.1000-694X.2023.00180
[9] Mason T J, Honeysett J, Thomas R F, et al. Monitoring vital signs:Wetland vegetation responses to hydrological resources in the Macquarie Marshes NSW,Australia[J]. Austral Ecology, 2022, 47(6):1296-1314.
[10] Muradyan V, Tepanosyan G, Asmaryan S, et al. Relationships between NDVI and climatic factors in mountain ecosystems:A case study of Armenia[J]. Remote Sensing Applications:Society and Environment, 2019, 14:158-169.
[11] 刘殿锋, 王振松, 邱明丽. 基于系统耦合模拟的土地利用变化及其区域生境质量变化分析[J]. 信阳师范学院学报(自然科学版), 2025, 38(3):257-264.
Liu D F, Wang Z S, Qiu M L. Response of regional habitat quality to predieted land use change based on system coupling simulation[J]. Journal of Xinyang Normal University:Natural Science Edition, 2025, 38(3):257-264.
[12] 陈亮, 孙钰蘅. 基于遥感生态指数的河南连康山国家级自然保护区生态环境质量时空变化研究[J]. 信阳师范学院学报(自然科学版), 2024, 37(1):11-17.
Chen L, Sun Y H. The spatiotemporal changes of ecological environment quality in Henan Liankang Mountain national nature reserve based on remote sensing ecological index[J]. Journal of Xinyang Normal University (Natural Science Edition), 2024, 37(1):11-17.
[13] 何楷迪, 孙建, 陈秋计. 气候要素和土壤质地对青藏高原草地净初级生产力和降水利用率的影响[J]. 草业科学, 2019, 36(4):1053-1065.
He K D, Sun J, Chen Q J. Response of climate and soil texture to net primary productivity and precipitation-use efficiency in the Tibetan Plateau[J]. Pratacultural Science, 2019, 36(4):1053-1065.
[14] 李美丽, 尹礼昌, 张园, 等. 基于MODIS-EVI的西南地区植被覆盖时空变化及驱动因素研究[J]. 生态学报, 2021, 41(3):1138-1147.
Li M L, Yin L C, Zhang Y, et al. Spatio-temporal dynamics of fractional vegetation coverage based on MODIS-EVI and its driving factors in Southwest China[J]. Acta Ecologica Sinica, 2021, 41(3):1138-1147.
[15] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
[16] 杜宜臻, 刘菲, 柳心雨, 等. 三江源区植被NDVI时空变化特征及其驱动因素分析[J]. 绿色科技, 2024, 26(22):31-37.
Du Y Z, Liu F, Liu X Y, et al. Spatiotemporal variation of NDVI and its driving factors in the three rivers source region[J]. Journal of Green Science and Technology, 2024, 26(22):31-37.
[17] 黎梅, 李春雨, 张玲艺, 等. 吕梁山植被NDVI时空变化及气候因子探测[J]. 科技和产业, 2024, 24(21):306-310.
Li M, Li C Y, Zhang L Y, et al. Temporal and spatial variations of NDVI and climate factors in Lvliang Mountains[J]. Science Technology and Industry, 2024, 24(21):306-310.
[18] 孙智杰, 廖媛, 余波, 等. 鄂东南矿集区2000—2022年NDVI时空变化及其驱动因素分析[J]. 环境生态学, 2024, 6(10):19-24.
Sun Z J, Liao Y, Yu B, et al. Spatial-temporal pattern of NDVI and its driving factors in the mining district of Southeast Hubei from 2000 to 2022[J]. Environmental Ecology, 2024, 6(10):19-24.
[19] 姜萍. 1982—2015年中国植被覆盖变化及其对气候变化的敏感性分析[D]. 兰州: 兰州大学, 2022.
Jiang P. Analysis of vegetation change in China and its sensitivity to climate variability from 1982 to 2015[D]. Lanzhou: Lanzhou University, 2022.
[20] 仇少君, 郝小雨, 赵士诚, 等. 黑土地肥力下降成因与保护利用对策——基于养分资源高效利用视角分析[J]. 植物营养与肥料学报, 2025, 31(1):1-11.
Chou S J, Hao X Y, Zhao S C, et al. Causes of fertility decline and countermeasures for protection and utilization of upland black soil—An analysis from the perspective of nutrient resources high-efficient utilization[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(1):1-11.
[21] 张宇, 余振, 栾军伟, 等. 1982—2020年东北森林带植被绿度时空变化特征[J]. 生态学报, 2023, 43(16):6670-6681.
Zhang Y, Yu Z,Luan, J W, et al. Spatiotemporal variations of vegetation greenness in the forest belt of Northeast China during 1982—2020[J]. Acta Ecologica Sinica, 2023, 43(16):6670-6681.
[22] 孙钰蘅, 张辰光, 刘翼泽, 等. 1970—2019年河南省气温变化特征及其对ENSO事件的响应[J]. 信阳师范学院学报(自然科学版), 2023, 36(4):528-534.
Sun Y H, Zhang C G, Liu Y Z, et al. Characteristics of temperature change and its response to ENSO events in Henan Province during 1970—2019[J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(4):528-534.
[23] 薛港. 2001—2020年中国植被净初级生产力时空变化及其影响因素分析[D]. 哈尔滨: 东北林业大学, 2023.
Xue G. Spatial-temporal variation of net primary productivity of vegetation in China and its influencing factors from 2001 to 2020[D]. Harbin: Northeast Forestry University, 2023.
[24] 宁晓春, 杨明新, 曹文强, 等. 2000—2022年三江源植被覆盖度时空变化格局及其气候驱动机制[J]. 测绘通报, 2024(12):70-76,83.
doi: 10.13474/j.cnki.11-2246.2024.1211
Ning X C, Yang M X, Cao W Q, et al. Spatial-temporal pattern of vegetation coverage and its climate driving mechanism in the Three Rivers Headwaters region from 2000—2022[J]. Bulletin of Surveying and Mapping, 2024(12):70-76,83.
doi: 10.13474/j.cnki.11-2246.2024.1211
[25] 张强. 2009:极端天气的成因和预防[N]. 光明日报,2009-08-17(10).
Zhang Q, 2009:The causes and prevention of extreme weather events[N]. Guangming Daily,2009-08-17(10).
[26] 中共中央国务院. 国务院关于全国林地保护利用规划纲要(2010—2020年)的批复[EB/OL].(2010-7-25) [2024-9-20]. https://www.waizi.org.cn/law/9434.html.
Central Committee of the Communist Party of China and the State Council. Approval of the National Forest Protection and Utilization Planning Outline (2010—2020)[EB/OL].(2010-7-25) [2024-9-20]. https://www.waizi.org.cn/law/9434.html.
[27] 谢勇, 王爽, 王恒阳, 等. 东北三省NDVI时空变化特征及对气候因子的响应[J]. 气象与环境学报, 2024, 40(1):71-78.
Xie Y, Wang S, Wang H Y, et al. Spatio-temporal variation characteristics of NDVI in the three northeast provinces and their responses to climatic factors[J]. Journal of Meteorology and Environment, 2024, 40(1):71-78.
[28] 程潇, 林珏琪, 徐学闯, 等. 泉州市城镇化建设对植被覆盖影响的遥感分析[J]. 莆田学院学报, 2024, 31(5):91-97,108.
Cheng X, Lin Y Q, Xu X C, et al. Remote sensing analysis of the impact of urbanization construction on vegetation cover in Quanzhou City[J]. Journal of Putian University, 2024, 31(5):91-97,108.
[29] 王红. 绿洲城镇化与水土资源利用效益协调度分析——以武威市为例[D]. 兰州: 西北师范大学, 2013.
Wang H. Coordination degree analysis of the oasis towns of soil and water resource utilization efficiency:Taking Wuwei City as an example[D]. Lanzhou: Northwest Normal University, 2013.
[30] 江慧娴, 董文杰. 气候变化和人类活动对华北地区植被NDVI的影响研究[J]. 高原气象, 2024, 43(5):1312-1328.
doi: 10.7522/j.issn.1000-0534.2024.00013
Jiang H X, Dong W J. Impacts of climate change and human activities on NDVI change in North China[J]. Plateau Meteorology, 2024, 43(5):1312-1328.
doi: 10.7522/j.issn.1000-0534.2024.00013
[31] 裴志林, 曹晓娟, 王冬, 等. 内蒙古植被覆盖时空变化特征及其对人类活动的响应[J]. 干旱区研究, 2024, 41(4):629-638.
doi: 10.13866/j.azr.2024.04.09
Pei Z L, Cao X J, Wang D, et al. Spatiotemporal variation in vegetation coverage in Inner Mongolia and its response to human activities[J]. Arid Zone Research, 2024, 41(4):629-638.
doi: 10.13866/j.azr.2024.04.09
[32] 田佳西. 西北地区气候暖湿化演变趋势及其对植被恢复影响研究[D]. 南京: 南京林业大学, 2023.
Tian J X. Study on the evolution of warmer and wetter climate and its influence on vegetation restoration in Northwest China[D]. Nanjing: Nanjing Forestry University, 2023.
[33] 刘雨亭, 王磊, 李谢辉, 等. 西南地区2000—2020年植被覆盖度时空变化与影响因素分析[J]. 高原气象, 2024, 43(1):264-276.
doi: 10.7522/j.issn.1000-0534.2023.00052
Liu Y T, Wang L, Li X H, et al. Analysis on spatio-temporal variability of fractional vegetation cover and influencing factors from 2000 to 2020 in southwestern China[J]. Plateau Meteorology, 2024, 43(1):264-276.
doi: 10.7522/j.issn.1000-0534.2023.00052
[34] 陈正满, 李贺鹏, 朱弘. 台州市“一江两溪” 河岸带植被分布格局及其环境解释[J]. 信阳师范学院学报(自然科学版), 2024, 37(3):329-336.
Chen Z M, Li H P, Zhu H. Vegetation distribution pattern of plant community and habitat explanation analysis in the “one river and two streams” riparian zone of Taizhou[J]. Journal of Xinyang Normal University (Natural Science Edition), 2024, 37(3):329-336.
[1] 张萍, 庞咏, 陈庆松, 杨坤, 邹祖建, 侯云花, 王彩琼, 冯思齐. 基于RSEI模型的滇西北高山峡谷区生态环境质量动态监测及驱动因子分析[J]. 自然资源遥感, 2025, 37(5): 243-253.
[2] 邢笑天, 王琪, 赵佳俊, 刘浦东, 张靖苑. 耦合InVEST—PLUS模型的济南都市圈土地利用及碳储量变化研究[J]. 自然资源遥感, 2025, 37(4): 118-130.
[3] 汪媛媛, 臧协超, 许伟伟, 阳昌霞, 金洋, 任静华, 贺新星. 基于SRP的长江经济带江苏段生态脆弱性评价与分析[J]. 自然资源遥感, 2025, 37(3): 170-182.
[4] 葛利玲, 王璐. 融合多源遥感数据的河南省淅川县植被动态演变研究[J]. 自然资源遥感, 2025, 37(3): 192-202.
[5] 谢宜嘉, 杨倍倍, 张镇, 陈佳, 王喆, 孟令奎. 2000—2022年北京市植被春季物候期变化特征分析[J]. 自然资源遥感, 2025, 37(2): 185-193.
[6] 杨涛, 王立社, 郑鹏鹏, 王鹏, 赵寒森, 杨生飞, 赵君, 奚仁刚, 任华宁, 蔡浩杰. 2001—2022年陕西省植被NDVI时空分异及其对气候与矿业行为的响应[J]. 自然资源遥感, 2025, 37(1): 82-93.
[7] 奥勇, 汪雅, 王晓峰, 吴京盛, 张亦恒, 李雪娇. 2001—2020年间河南省郑州市生态环境质量时空变化及驱动因素分析[J]. 自然资源遥感, 2025, 37(1): 102-112.
[8] 钟旭珍, 吴瑞娟. 基于BFAST改进模型的沱江流域NDVI变化趋势及驱动力分析[J]. 自然资源遥感, 2025, 37(1): 131-141.
[9] 鲁军景, 孙雷刚, 左璐, 刘剑锋, 马晓倩, 郝庆涛. 基于京津冀功能分区的植被覆盖度时空演变特征及其影响因子[J]. 自然资源遥感, 2024, 36(4): 242-253.
[10] 凌肖露, 陈朝荣, 郭维栋, 秦凯, 张锦龙. ESA CCI土壤湿度资料在中国东部的综合评估[J]. 自然资源遥感, 2024, 36(4): 92-106.
[11] 苏悦, 刘洪, 杨武年, 欧阳渊, 张景华, 张腾蛟, 黄勇. 高原山地区域生态脆弱性研究——以四川省康定市为例[J]. 自然资源遥感, 2024, 36(3): 206-215.
[12] 李益敏, 冯显杰, 李媛婷, 杨雪, 向倩英, 计培琨. 云南省植被覆盖时空变化特征及影响因素研究[J]. 自然资源遥感, 2024, 36(2): 116-125.
[13] 姚灵筠, 王力, 牛铮, 尹子琪, 付雨文. 2000—2018年长株潭城市群城市扩张及其热岛响应[J]. 自然资源遥感, 2024, 36(1): 162-168.
[14] 吴冰洁, 文广超, 赵梅娟, 谢洪波, 冯雅杰, 贾琳. 基于Landsat的巴音河流域生态环境综合演化分析[J]. 自然资源遥感, 2024, 36(1): 227-234.
[15] 黎孟琦, 李功权, 谢志辉. 整合多源遥感数据的洪涝灾害评估恢复——以河南“7·20”暴雨灾害为例[J]. 自然资源遥感, 2024, 36(1): 250-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发