Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1993, Vol. 5 Issue (1) : 43-46     DOI: 10.6046/gtzyyg.1993.01.08
Research and Discussion |
STUDY OF PROPERTIES FOR RED EDGE SHIFT OF WHEAT
Yin Xianxiang, Yi Weining, Xu Qingshan
Anhui Institute of Optics and Fine Mechanics, the Academy of sciences of china
Download: PDF(272 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Multitemporal spectrum data of wheat with high resolution have been processed using a digital derivation algorithm and their properties of red edge shifting toward long wavelenth have been extracted. Relationship between red edge shift and spectral resolution. growth period. chlorophyll content in leaf and coverage rate for wheat have been analysed. And then an optimal season to detect the properties of red edge shift have benn proposed,

Keywords Data mining      Hyperspectral      Partial least square      Disease index     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yuan-Yuan
CHEN Yun-Hao
LI Jing
JIANG Jin-Bao
CHENG Pei-Sheng
TANG Zheng-Jiang
Cite this article:   
WANG Yuan-Yuan,CHEN Yun-Hao,LI Jing, et al. STUDY OF PROPERTIES FOR RED EDGE SHIFT OF WHEAT[J]. REMOTE SENSING FOR LAND & RESOURCES, 1993, 5(1): 43-46.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1993.01.08     OR     https://www.gtzyyg.com/EN/Y1993/V5/I1/43


[1] Horler, D. N. H., M. Dockray and J. Barber. The red edge of plant leaf reflectance. Int. J. Remote Sensing, 1983(4): 273-288

[2] Collins, W., S. H. Chang, G. Raines, F. Canney and R. Ashley. Airborne biogeophysical mappiisg of hidden mineral deposits. Economic Geology, 1983(78):737-749

[3] Vane, G. et. al. Observational parameters for remote sensing in the next decade. Proc, of SPIE, 1982,3(5): 52-65

[4] Chang, S. H, and W. Collins. Confirmation of airborne biogeophysical mineral exploration technique using laboratory methods. Economic Geology, 1983(78): 723-736

[5] 武汉大学和山东大学计算数学教研室编.计算方法.人民教育出版社,1979

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[6] LI Shuangquan, MA Yufeng, LIU Xun, LI Changchun, DU Jun. Hyperspectral inversion of macro element content in loess based on the profile of Zaoshugou Village, Mangshan Mountain, Zhengzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 121-129.
[7] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[8] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[9] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[10] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[11] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[12] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[13] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[14] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[15] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech