Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2007, Vol. 19 Issue (1) : 90-94     DOI: 10.6046/gtzyyg.2007.01.21
GIS |
THE CONSTRUCTION OF REMOTE SENSING DATA OF THE BASE PLATFORM AND ITS POSITION IN THE SPATIAL INFORMATION DATA CHINA
 PAN Qiang, SUN Jian-Zhong, ZHANG Jie, CHEN Ai-Li
Shanghai City Development Research & Information Center, Shanghai 200032, China
Download: PDF(691 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The remote sensing data of the Shanghai base data platform constitute the basic data that contain the urban spatial information, and they have been widely used in different departments of the government. This paper puts forward the main idea concerning the construction of remote sensing data of the Shanghai base data platform. Having been constructed through several links, the remote sensing data of the Shanghai base data platform are issued in three ways for different kinds of users. Practice has demonstrated that the remote sensing data of the Shanghai base platform occupy a key basic position in the spatial information data chain.

Keywords forest fire      Remote sensing monitoring      expert system      NOAA/AVHRR     
: 

 

 
  P 208

 
Issue Date: 19 July 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
PAN Qiang, SUN Jian-Zhong, ZHANG Jie, CHEN Ai-Li. THE CONSTRUCTION OF REMOTE SENSING DATA OF THE BASE PLATFORM AND ITS POSITION IN THE SPATIAL INFORMATION DATA CHINA[J]. REMOTE SENSING FOR LAND & RESOURCES,2007, 19(1): 90-94.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2007.01.21     OR     https://www.gtzyyg.com/EN/Y2007/V19/I1/90
[1] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[2] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[3] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[4] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[5] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[6] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[7] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[8] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[9] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[10] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[11] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[12] Xianhua YANG, Jie HUANG, Li TIAN, Bei PENG, Lixiao XIAO, Xinlong SONG. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land & Resources, 2018, 30(3): 143-150.
[13] Chungui ZHANG, Bingqing LIN. Application of FY-2E data to remote sensing monitoring of sea fog in Fujian coastal region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 7-7.
[14] XUE Qing, WU Wei, LI Mingsong, DONG Shuangfa, ZHANG Xinyi, SHI Haigang. Application of GF-1 satellite data to remote sensing monitoring of the mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 67-72.
[15] WANG Yijun, ZHAO Jun, WEI Wei, HAN Liqin. Remote sensing investigation and analysis of wetland in Gansu section of Heihe River Basin in the past 14 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech