Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2009, Vol. 21 Issue (4) : 49-52     DOI: 10.6046/gtzyyg.2009.04.10
Technology Application |
THE INVERSION OF VEGETATION STRUCTURAL PARAMETERS USING DUAL-BASELINE POLARIMETRIC SAR INTERFEROMETRY
CHEN Xi 1, ZHANG Hong 2, WANG Chao 2
1. No.38 Institute, CETC, Hefei 230031, China;2. Center for Earth Observation and Digital Earth, CAS, Beijing 100086, China
Download: PDF(881 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation height and vertical structural profile constitute the critical parameters for the  forest biomass and carbon cycle model, and the polarimetric SAR Interferometry (PolInSAR) technique makes quantitative vegetation structural parameter inversion possible. In this paper, a dual-baseline twice-fitting method was used to extract the vegetation height and then, as prior information, a vegetation vertical structural profile was further estimated by expanding the polynomial of the vertical structural function. Finally, the simulated data and real data were used to validate this dual-baseline technique. The experimental results demonstrate the effectiveness and feasibility of the forest vertical structural profile inversion using interferometric coherence variation under different polarization conditions.

Keywords NOAA-AVHRR      Land surface temperature      Split window algorithms     
Issue Date: 16 December 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Zhi-hao
ZHANG Ming-hua
Arnon Karnieli
Cite this article:   
QIN Zhi-hao,ZHANG Ming-hua,Arnon Karnieli. THE INVERSION OF VEGETATION STRUCTURAL PARAMETERS USING DUAL-BASELINE POLARIMETRIC SAR INTERFEROMETRY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 49-52.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2009.04.10     OR     https://www.gtzyyg.com/EN/Y2009/V21/I4/49
[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[3] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[4] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[5] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[6] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[7] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[8] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[9] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[10] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[11] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[12] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[13] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[14] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[15] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech