Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 11-18     DOI: 10.6046/gtzyyg.2020.02.02
|
A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region
Liqiang TONG1, Lixin PEI2, Jienan TU1(), Zhaocheng GUO1, Jiangkuan YU1, Jinghui FAN1, Dandan LI2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. China University of Geoscience (Beijing), School of Earth Sciences and Resources, Beijing 100083, China
Download: PDF(2613 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Tibetan Plateau has the largest ice avalanche in China. Since the 20th Century, with global warming, more and more ice avalanches have occurred in this region, which makes serious loss of life and property of the local residents. Further researches and investigations on ice avalanches have important practical significance for preventing and reducing the disasters. On the basis of the analysis and summary of the disaster mode, the avalanches movements and influence factors, in combination with the typical characteristics of the ice avalanche in alpine valley region, the authors elaborated the definition of the ice avalanche disaster. It is considered that ice avalanche disaster should not only contain the formation of the disasters directly induced by ice avalanche but also include the chain-type disaster induced by ice avalanche. Based on the definition, the authors also divided ice avalanche disaster into three types, i.e., ice avalanche direct hazard, ice avalanche induced glacier lake outburst flood hazard and ice avalanche induced dammed lake outburst flood hazard. The authors want to establish some universal and practical classification criteria which could provide the theoretical and scientific basis for the further study about disaster prevention, mitigation and relief of ice avalanche in the Tibetan Plateau.

Keywords ice avalanche      Tibetan plateau      glacier      remote sensing      hazards     
:  P694  
Corresponding Authors: Jienan TU     E-mail: tujienan@outlook.com
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liqiang TONG
Lixin PEI
Jienan TU
Zhaocheng GUO
Jiangkuan YU
Jinghui FAN
Dandan LI
Cite this article:   
Liqiang TONG,Lixin PEI,Jienan TU, et al. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land & Resources, 2020, 32(2): 11-18.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.02     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/11
Fig.1  Remote sensing image and field photo of Aru glacier collapse in Ngari, Tibet
Fig.2  Variation of average temperature, preicipitation in Rutog County andthe glacier area on the west side of Aru Co
Fig.3  Remote sensing image about Glacier Lake Outburst Flood event of Recire Co
Fig.4  Remote sensing image before and after the ice avalanche of Sedongpu Valley on 2017 October
Fig.5  Comparison Landsat 8 remote sensing image about upstream provenance of Sedongpu Valley before and after debris flow
[1] 施雅风. 中国第四纪冰川新论[M]. 上海: 上海科学普及出版社, 2011: 8-9
[1] Shi Y F. New understanding of quaternary glaciations in China[M]. Shanghai: Shanghai Science Popularization Press, 2011: 8-9.
[2] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015,70(1):3-16.
doi: 10.11821/dlxb201501001 url: http://www.geog.com.cn/CN/abstract/abstract36496.shtml
[2] Liu S Y, Yao X J, Guo W Q, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015,70(1):3-16.
doi: 10.11821/dlxb201501001 url: http://www.geog.com.cn/CN/abstract/abstract36496.shtml
[3] 赵越, 钱方, 朱大岗, 等. 青藏高原第四纪冰川的早期记录及其构造与气候含义[J]. 中国地质, 2009,36(6):1195-1207.
[3] Zhao Y, Qian F, Zhu D G, et al. Early records of Quaternary glaciation in Qinghai-Tibet plateau and their tectonic and climatic implications[J]. Geology in China, 2009,36(6):1195-1207.
[4] 吴右. 青藏高原冰川变化趋势及对策研究[C]//西藏发展论坛, 2018(1):73-75.
[4] Wu Y. Study on the trend and countermeasures of glaciers on the Tibetan Plateau[C]//Tibet:Tibet Development Forum, 2018,(1):73-75
[5] 蒲健辰, 姚檀栋, 王宁练, 等. 近百年来青藏高原冰川的进退变化[J]. 冰川冻土, 2004,26(5):517-522.
url: http://bcdt.westgis.ac.cn/CN/abstract/abstract1204.shtml
[5] Pu J C, Yao T D, Wang N L, et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century[J]. Journal of Glaciology and Geocryology, 2004,26(5):517-522.
url: http://bcdt.westgis.ac.cn/CN/abstract/abstract1204.shtml
[6] 沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(Ⅱ):灾害效应[J]. 冰川冻土, 2013,35(6):1355-1370.
doi: 10.7522/j.issn.1000-0240.2013.0151 url: http://bcdt.westgis.ac.cn/CN/abstract/abstract3348.shtml
[6] Shen Y P, Su H C, Wang G Y, et al. The responses of glaciers and snow cover to climate change in xinjiang(II):Hazards Effects[J]. Journal of Glaciology and Geocryology, 2013,35(6):1355-1370.
doi: 10.7522/j.issn.1000-0240.2013.0151 url: http://bcdt.westgis.ac.cn/CN/abstract/abstract3348.shtml
[7] 胡文涛, 姚檀栋, 余武生, 等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018,40(6), 1141-1152.
[7] Hu W T, Yao T D, Yu W S, et al. Advances in the study of glacier avalanches in High Asia[J]. Journal of Glaciology and Geocryology, 2018,40(6):1141-1152.
[8] 黄田进. 青藏高原冰川厚度与湖泊水位的时空变化研究[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[8] Huang T J. Spatial-temporal changes of glacier thickness and lake level on the Qinghai-Tibetan Plateau[D].Beijing:University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth Chinese Academy Sciences), 2017.
[9] Osczevski R J. The 1849 Balvullich Ice Fall[DB/OL]. Skeptical Inquirer,2018,42(3).https://skepticalinquirer.org/2018/05/the-1849-balvullich-ice-fall/
url: https://skepticalinquirer.org/2018/05/the-1849-balvullich-ice-fall/
[10] Pasquier L D.The fall of the Altels glacier[J].Nature, 1896,53(1371):317-317.
[11] Pinchak A C. Avalanche activity on the Vaughan Lewis Icefall[J]. Journal of Glaciology, 1968,7(51):441-448.
[12] Röthlisberger H. Ice avalanches[J]. Journal of Glaciology, 1977,19(81):669-671.
[13] Margreth S, Fun M. Hazard mapping for ice and combined snow/ice avalanches-two case studies from the Swiss and Italian alps[J]. Cold Regions Science & Technology, 1999,30(1-3):159-173.
[14] Salzmann N, K.B A, Huggel C,et al.Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling[J]. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 2004,58(2):74-84.
[15] Jürg Alean. Ice avalanche activity and mass balance of a high-altitude hanging glacier in the Swiss alps[J]. Annals of Glaciology, 1985,6:248-249.
[16] Woerd J V, Owen L A, Tapponnier P, et al. Giant, M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan,northern Tibet:Characteristics[J]. nature and dynamics.Geological Society of America Bulletin, 2004,116(3-4):394-406.
[17] Kotlyakov V M, Rototaeva O V, Nosenko G A. The September 2002 Kolka glacier catastrophe in north Ossetia,Russian federation:Evidence and analysis the surging Kolka glacier[J]. Mountain Research & Development, 2014,24:78-83.
[18] Mahboob M A, Iqbal J, Atif I. Modeling and simulation of glacier avalanche:A case study of gayari sector glaciers hazards assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(11):5824-5834.
[19] Coe J A, Bessette-Kirton E K, Geertsema M.Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve,Alaska detected from 1984 to 2016 Landsat imagery[J]. Landslides, 2018,15(3):393-407.
doi: 10.1007/s10346-017-0879-7 url: https://doi.org/10.1007/s10346-017-0879-7
[20] Andreas K, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018,11(2):114-120.
[21] Margreth S, Faillettaz J, Funk M, et al. Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif[J]. Cold Regions Science & Technology, 2011,69(2):194-201.
[22] 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 中国气象出版社, 2014.
[22] Qin D H, Yao T D, Ding Y J, et al. Glossary of cryospheric science[M]. Beijing: China Meteorological Press, 2014.
[23] 王世金, 秦大河, 任贾文. 冰湖溃决灾害风险研究进展及其展望[J]. 水科学进展, 2012,23(5):735-742.
[23] Wang S J, Qin D H, Ren J W. Progress and prospect in risk assessment of hazards from glacier lake outbursts[J]. Advances in Water Science, 2012,23(05):735-742.
[24] 姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J].自然资源学报, 2014(8):1377-1390.
[24] Yao X J, Liu S Y, Sun M P, et al. Study on the glacial lake outburst flood events in Tibet since the 20th century[J]. Journal of Natural Resources, 2014,29(08):1377-1390.
[25] 刘晶晶, 唐川, 程尊兰, 等. 气温对西藏冰湖溃决事件的影响[J]. 吉林大学学报(地球科学版), 2011,41(4):1121-1125.
[25] Liu J J, Tang C, Cheng Z L, et al. Impact of temperature on glacier-lake outbursts in Tibet[J]. Journal of Jilin University(Earth Science Edition), 2011,41(4):1121-1129.
[26] 孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害[J]. 冰川冻土, 2014,36(1):158-165.
[26] Sun M P, Liu S Y, Yao X J, et al. The cause and potential hazard of glacial lake outburst flood occurred on July 5,2013 in Jiali County,Tibet[J]. Journal of Glaciology and Geocryology, 2014,36(1):158-165.
[27] 童立强, 聂洪峰, 李建存, 等. 喜马拉雅山地区大型泥石流遥感调查与发育特征研究[J]. 国土资源遥感, 2013,25(4):104-112.doi: 10.6046/gtzyyg.2013.04.17.
[27] Tong L Q, Nie H F, Li J C, et al. Survey of large-scale debris flow and study of its development characteristics using remote sensing technology in the Himalayas[J]. Remote Sensing for Land and Resources, 2013,25(4):104-112.doi: 10.6046/gtzyyg.2013.04.17.
[28] 童立强, 涂杰楠, 裴丽鑫, 等. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J]. 工程地质学报, 2018,26(6):147-156.
[28] Tong L Q, Tu J N, Pei L X, et al. Preliminary discussion of the frequently debris flow events in Sedongpu basin at Gyalaperi Peak,Yarlung Zangbo River[J]. Journal of Engineering Geology, 2018,26(6):1552-1561.
[29] 刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019,46(2):219-234.
[29] Liu C Z, Lv J T, Tong L Q, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019,46(2):219-234.
[30] Siang water not fit for drinking:Arunachal CM[EB/OL].(2017-12-3). https://timesofindia.indiatimes.com/city/guwahati/siang-water-not-fit-for-drinking-arunachal-cm/articleshow/61909755.cms.
url: https://timesofindia.indiatimes.com/city/guwahati/siang-water-not-fit-for-drinking-arunachal-cm/articleshow/61909755.cms
[31] India Says Chinese Construction on River Dirtying Water[EB/OL].(2017-12-12). http://www.nydailynews.com/newswires/news/world/india-chinese-construction-river-dirtying-water-article-1.3693171.
url: http://www.nydailynews.com/newswires/news/world/india-chinese-construction-river-dirtying-water-article-1.3693171
[32] 李震, 陈宁生, 张建平, 等. 波曲流域冰湖及其溃决灾害链特征分析[J]. 水文地质工程地质, 2014,41(4):143-148.
[32] Li Z, Chen N S, Zhang J P, et al. Characteristics of the disaster chain of outburst and glacier lakes in the Boiqu River basin[J]. Hydrogeology & Engineering Geology, 2014,41(4):143-148.
[33] 巴桑次仁, 邓桂英, 巴桑央金, 等. 西藏地震应急救援体系建设的探索[J]. 高原地震, 2009,21(2):58-61.
[33] Basang C R, Deng G Y, Basang Y J. Disscussion on the Earthquake Emergency System in Tibet Autonomous Region[J]. Plateau Earthquake Research, 2009,21(02):58-61.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech