Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 6-10     DOI: 10.6046/gtzyyg.2012.03.02
Technology and Methodology |
A Method to Retrieve the Oceanic Absorption Coefficient Based on Artificial Neural Network
ZHU Jin-shan1,2, LIANG Shi-ying1, SU Xun-bo3
1. Geomatics College, Shandong University of Science and Technology, Qingdao 266590, China;
2. Key Laboratory of Surveying and Mapping Technology on Island and Reed, SBSM, Qingdao 266590, China;
3. College of Civil and Architectural Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Download: PDF(951 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The absorption coefficient of water is an inherent optical parameter and constitutes the foundation of research on water optics remote sensing. A method for retrieving the oceanic absorption coefficient using the data of remote sensing reflectance (Rrs) and based on the artificial neural network (ANN) is presented in this paper. The algorithm retrieves the oceanic absorption coefficient with 440 nm as its wavelength, using the situ data of remote sensing reflectance (Rrs) to establish BP neural network. 80% of the situ data of Rrs were used for training data set, and the other 20% were used for testing data set. The results show that making the right choice of the hidden layer joints, transfer function and train function is very important. If we choose the optimal hidden layer joints, transfer function and train function, the correlation coefficient between testing data and situ data can be as high as 0.978, which shows that the method for retrieving the oceanic absorption coefficient based on the artificial neural network is effective.
Keywords remote sensing interpretation      melange zone      slices assemblage      ophiolite     
:  TP75  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Chang-hai
LIU Deng-zhong
LIU Jin-long
HUANG Hui
Cite this article:   
WANG Chang-hai,LIU Deng-zhong,LIU Jin-long, et al. A Method to Retrieve the Oceanic Absorption Coefficient Based on Artificial Neural Network[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 6-10.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.02     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/6
[1] Jerlov N G.Marine Optics[M].New York:Elsevier,1976:11-20.
[2] Marshall B R,Smith R C.Raman Scattering and In-water Ocean Properties[J].Applied Optics,1990,29(1):71-84.
[3] Hawes S K.Quantum Fluorescence Efficiencies of Marine Fulvic and Humic Acids[D].USA:University of South Florida,Master Master’s Thesis Depth of Marine Science,1992:1-92.
[4] Morel A,Gentili B.Diffuse Reflectance of Oceanic Waters:Its Dependence on Sun Angle as Influenced by the Molecular Scattering Contribution[J].Applied Optics,1991,30(30):4427-4438.
[5] Morel A,Gentili B.Diffuse Reflectance of Oceanic Waters:Ⅱ Bidirectional Aspects[J].Applied Optics,1993,32(33):6864-6879.
[6] Morel A,Gentili B.Diffuse Reflectance of Oceanic Waters:Ⅲ Implication of Bidirectionality for the Remote Sensing Problem[J].Applied Optics,1996,35(24):4666-4952.
[7] Morel A,Antoine D,Gentili B.Bidirectional Reflectance of Oceanic Waters:Accounting for Raman Emission and Varying Particle Scattering Phase Function[J].Applied Optics,2002,41(30):6289-6306.
[8] 胡连波.黄东海水体漫衰减系数研究[D].青岛:中国海洋大学,2008. Hu L B.Research on the Diffuse Attenuation Coefficients in the East China Seas[D].Qingdao:Ocean University of China,2008(in Chinese with English Abstract).
[9] Morel A,Prieur L.Analysis of Variations in Ocean Color[J].Limnology and Oceanography,1977,22(4):709-722.
[10] Gordon H R,Morel A.Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery:A Review[M].New York:New York,Springer-Verlag,Lecture Notes on Coastal and Estuarine Studies,1983(4):1-114.
[11] 胡连波,刘智深.利用准分析算法由遥感反射比反演黄海水体吸收系数[J].中国海洋大学学报:自然科学版,2007,37(s2):157-164. Hu L B,Liu Z S.Deriving Absorption Coefficients from Remote Sensing Reflectance Using the Quasi-analytical Algorithm (QAA) in the Yellow Sea[J].Periodical of Ocean University of China:Natural Science Version,2007,37(s2):157-164(in Chinese with English Abstract).
[12] Bricaud A,Babin M,Morel A,et al.Variability in the Chlorophyll Specific Absorption Coefficients of Natural Phytoplankton:Analysis and Parameterization[J].J Geophys Res,1995,100(7):13321-13332.
[13] Lee Z P,Carder K L,Peacock T G,et al.Method to Derive Ocean Absorption Coefficients from Remote Sensing Reflectance[J].Applied Optics,1996,35(3):453-462.
[14] He M X,Liu Z S,Du K P,et al.Retrieval of Chlorophyll from Remote-Sensing Reflectance in the China Seas[J].Applied Optics,2000,39(15):2467-2474.
[15] 王晓梅,唐军武,宋庆君,等.黄海、东海水体总吸收系数光谱特性及其统计反演模式研究[J].海洋与湖沼,2006,37(3):256-263. Wang X M,Tang J W,Song Q J,et al.The Statistic Inversion Algorithm’s and Spectral Relations of Total Absorption Coefficients for the Huanghai Sea and the East China Sea[J].Oceanologia Et Limnologia Sinica,2006,37(3):256-263(in Chinese with English Abstract).
[16] Lee Z P,Carder K L,Mobley C D,et al.Hyperspectral Remote Sensing for Shallow Waters.1.Semi-analytical Model[J].Applied Optics,1998,37(27):6329-6338.
[17] 刘雪锋,张亭禄.由粒子吸收光谱提取浮游植物吸收光谱的人工神经网络方法[J].海洋技术,2006,25(3):45-50. Liu X F,Zhang T L.An Artificial Neural Network Method for Extraction of Phytoplankton Absorption Spectra from Total Particulate Absorption Spectra[J].Ocean Technology,2006,25(3):45-50(in Chinese with English Abstract).
[18] 施英妮.基于人工神经网络技术的高光谱遥感浅海水深反演研究[D].青岛:中国海洋大学,2005. Shi Y N.Study of the Hyperspectral Remote Sensing of Shallow Waters Bathymetry with Artificial Neural Network Technology[D].Qingdao:Ocean University of China,2005(in Chinese with English Abstract).
[1] Xiaoping XIE, Maowei BAI, Zhicong CHEN, Weibo LIU, Shuna XI. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land & Resources, 2019, 31(1): 237-246.
[2] Xinxin SUI, Suwen SUI. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[3] Xinxin SUI, Suwen SUI, Kun LIU. Research and construction of interpretation result data management system toward remote sensing application[J]. Remote Sensing for Land & Resources, 2018, 30(3): 238-243.
[4] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[5] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[6] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
[7] LI Xiaomin, YAN Yunpeng, LIU Gang, LI Dongling, ZHANG Xing, ZHUANG Yongcheng. Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 141-148.
[8] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[9] SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
[10] LIU Dechang, TONG Qinlong, LIN Ziyu, YANG Guofang. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 136-143.
[11] XU Bing, FANG Chen. Data fusion methods of ZY-1 02C and ETM+ images and effect evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 80-85.
[12] XU Yueren, HE Honglin, CHEN Lize, SHEN Xuhui. Dynamic remote sensing interpretation of geological disasters in Nanping City of Fujian Province using CBERS serial data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 153-159.
[13] BIE Xiaojuan, ZHANG Tingbin, SUN Chuanmin, GUO Na. Study of methods for extraction of remote sensing information of rocks and altered minerals from Luobusha ophiolite in east Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 72-78.
[14] ZHANG Mingyang, MA Weifeng, TANG Xiangdan, LI Xianwei. Automatic mapping of the results of 3D remote sensing interpretation of geological disasters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 164-167.
[15] YU Feng-ming, HE Long-qing, WANG Lei. Remote Sensing Interpretation of Ductile Shear Zone in Wudang Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 124-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech