Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 237-246     DOI: 10.6046/gtzyyg.2019.01.31
|
Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault
Xiaoping XIE1, Maowei BAI1(), Zhicong CHEN1, Weibo LIU2, Shuna XI3
1.School of Geography and Tourism, Qufu Normal University, Rizhao 276826, China
2.Geochemical Exploration Party, Sichuan Bureau of Exploration and Development of Geology and Minerals Resources, Deyang 618000, China
3.Institute of Geological Relics, No. 137 Geological Party, Sichuan Coalfield Geological Bureau, Chengdu 610000, China
Download: PDF(10463 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, the authors systematically summarized the remote sensing interpretation signs of active faults and, by using Landsat ETM+, ASTER GDEM and Google Earth image data in combination with previous research results, obtained the spatial distribution of active faults in the study area and analyzed in detail fault properties and activities. It is shown that Pingwu — Qingchuan fault, the northeastern segment of Beichuan — Yingxiu fault, Chaba — Linansi fault and Guangyuan — Jiangyou fault are roughly parallel in spatial distribution. On the basis of the measurement of offset streams dislocation, the contrast of exaggerated 3D landforms, the historical earthquakes analysis and the analysis of topographic relief extent of land surface, the authors have reached the conclusion that Pingwu — Qingchuan fault, the northeastern segment of Beichuan — Yingxiu fault, Chaba — Linansi fault and Guangyuan — Jiangyou fault are main active faults in the zone, which are all right-lateral strike-slip and thrust faults. Among them, the activity of the Pingwu — Qingchuan fault is strongest, the activity of the the northeastern segment of Beichuan — Yingxiu fault and Chaba — Linansi fault is weaker than that of Pingwu — Qingchuan fault, and the activity of the Guangyuan — Jiangyou fault is the weakest.

Keywords remote sensing interpretation      active fault zone      fault activity      the northeastern segment of the Longmenshan fault zone     
:  TP79  
Corresponding Authors: Maowei BAI     E-mail: 17863349965@163.com
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoping XIE
Maowei BAI
Zhicong CHEN
Weibo LIU
Shuna XI
Cite this article:   
Xiaoping XIE,Maowei BAI,Zhicong CHEN, et al. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land & Resources, 2019, 31(1): 237-246.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.31     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/237
Fig.1  Google Earth remote sensing image of the northeastern segment of the Longmenshan
Fig.2-1  Remote sensing image interpretation marks of the Pingwu—Qingchuan active faults
Fig.2-2  Remote sensing image interpretation marks of the Pingwu—Qingchuan active faults
Fig.3  Remote sensing image interpretation marks of the Beichuan—Yingxiu active faults
Fig.4  Remote sensing image interpretation marks of the Chaba—Linansi active faults
Fig.5  Remote sensing image interpretation marks of the Guangyuan—Jiangyou active faults
Fig.6  Drainage dislocation distance in main active fault zone along the northeastern segment of the Longmenshan
Fig.7-1  Triangle surface 3D visualization simulation in main active fault zone along the northeastern segment of the Longmenshan
Fig.7-2  Triangle surface 3D visualization simulation in main active fault zone along the northeastern segment of the Longmenshan
Fig.8  Interpretation results of active faults and basin locations in the northeastern segment of the Longmenshan
Fig.9  Consistency of active faults and earthquake spatial distribution along the northeastern segment of the Longmenshan
指标 窗口大小(i×i)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
窗口边长/m 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510
最大地形起伏度/m 481 983 1 551 1 909 2 015 2 015 2 018 2 021 2 024 2 036 2 038 2 038 2 012 2 071 2 071 2 068 2 071
Tab.1  Relationship between the side length of window and the maximum degree of topographic relief
Fig.10  Relife curve of land surface
Fig.11  Topographic relief extent of land surface in the northeastern segment of the Longmenshan
[1] 吴中海, 张岳桥, 胡道功 . 新构造、活动构造与地震地质[J]. 地质通报, 2014,33(4):391-402.
doi: 10.3969/j.issn.1671-2552.2014.04.001 url: http://www.cqvip.com/QK/95894A/201404/49440338.html
[1] Wu Z H, Zhang Y Q, Hu D G . Neotectonics,active tectonics and earthquake geology[J]. Geological Bulletin of China, 2014,33(4):391-402.
[2] Molnar P, Tapponnier P . Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 1975,189(4201):419-426.
doi: 10.1126/science.189.4201.419 pmid: 17781869 url: http://www.sciencemag.org/cgi/doi/10.1126/science.189.4201.419
[3] Taylor M, Yin A . Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution,contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 2009,5(3):199-214.
doi: 10.1130/GES00217.1 url: http://pubs.geoscienceworld.org/geosphere/article/5/3/199/31257/Active-structures-of-the-HimalayanTibetan-orogen
[4] 张培震, 邓起东, 张竹琪 , 等. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学(地球科学), 2013,43(10):1607-1620.
url: http://www.cnki.com.cn/Article/CJFDTotal-JDXK201310005.htm
[4] Zhang P Z, Deng Q D, Zhang Z Q , et al. Active faults,earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 2013,43(10):1607-1620.
[5] Chen Z H, Burchfiel B C, Liu Y , et al. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia implications for India/Eurasia intercontinental deformation[J]. Journal of Geophysical Research(Solid Earth), 2000,105(b7):16215-16227.
[6] Fu B H, Awata Y . Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet,inferred from geologic and geomorphic features[J]. Journal of Asian Earth Sciences, 2007,29(2):253-265.
doi: 10.1016/j.jseaes.2006.03.004 url: https://linkinghub.elsevier.com/retrieve/pii/S1367912006000770
[7] 李勇, 周荣军 , Densmore A L, 等. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J]. 第四纪研究, 2006,26(1):40-51.
doi: 10.3321/j.issn:1001-7410.2006.01.006 url: http://d.old.wanfangdata.com.cn/Periodical/dsjyj200601006
[7] Li Y, Zhou R J, Densmore A L , et al. Geomorphic evidence for the late cenozoic strike-slipping and thrusting in Longmen mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 2006,26(1):40-51.
[8] 李勇, 周荣军 , Densmore A L, 等. 青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J]. 沉积学报, 2006,24(2):153-164.
doi: 10.3969/j.issn.1000-0550.2006.02.001 url: http://d.wanfangdata.com.cn/Periodical/cjxb200602001
[8] Li Y, Zhou R J, Densmore A L , et al. Sedimentary responses to late Cenozoic thrusting and strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2006,24(2):153-164.
[9] 付碧宏, 时丕龙, 张之武 . 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报, 2008,82(12):1679-1687.
doi: 10.3321/j.issn:0001-5717.2008.12.005 url: http://www.cnki.com.cn/Article/CJFDTotal-DZXE200812007.htm
[9] Fu B H, Shi P L, Zhang Z W . Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica, 2008,82(12):1679-1687.
[10] 路静, 张景发, 姜文亮 , 等. 龙门山断裂带北段活动特征的遥感地质解译研究[J]. 地震, 2009,29(b10):164-172.
doi: 10.3969/j.issn.1000-3274.2009.z1.022 url: http://d.wanfangdata.com.cn/Periodical/diz2009z1022
[10] Lu J, Zhang J F, Jian W L , et al. Interpretation of active tectonics along the northern segment of the Longmenshan fault zone from RS images[J]. Earthquake, 2009,29(b10):164-172.
[11] 李勇, 黎兵, 周荣军 , 等. 剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J]. 地质学报, 2007,81(3):332-343.
doi: 10.3321/j.issn:0001-5717.2007.03.006 url: http://d.wanfangdata.com.cn/Periodical/dizhixb200703006
[11] Li Y, Li B, Zhou R J , et al. The quantitative correlation between denudation volume and flux in the denudation-accumulation system:Examples from Minjiang River drainage system[J]. Acta Geologica Sinica, 2007,81(3):332-343.
[12] 杨农, 张岳桥 . 龙门山断裂活动和川西高原隆升历史的裂变径迹测年[J]. 地质力学学报, 2010,16(4):359-371.
doi: 10.3969/j.issn.1006-6616.2010.04.004 url: http://www.cnki.com.cn/Article/CJFDTotal-DZLX201004005.htm
[12] Yang N, Zhang Y Q . Tission-track dating for activity of the Longmenshan fault zone and uplifting of the western Sichuan Plateau[J]. Journal of Geomechanics, 2010,16(4):359-371.
[13] 侯增谦, 吕庆田, 王安建 , 等. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例[J]. 矿床地质, 2003,22(4):319-333.
doi: 10.3969/j.issn.0258-7106.2003.04.001 url: http://www.cqvip.com/Main/Detail.aspx?id=8700709
[13] Hou Z Q, Lyu Q T, Wang A J , et al. Continental collision and related metallogeny:A case study of mineralization in Tibetan orogen[J]. Mineral Deposits, 2003,22(4):319-333.
[14] 李勇, 孙爱珍 . 龙门山造山带构造地层学研究[J]. 地层学杂志, 2000,24(3):201-206.
doi: 10.3969/j.issn.0253-4959.2000.03.006 url: http://www.cnki.com.cn/Article/CJFDTotal-DCXZ200003005.htm
[14] Li Y, Sun A Z . Tectostratigraphy of Longmenshan orogen[J]. Journal of Stratigrephy, 2000,24(3):201-206.
[15] 高名修 . 晚新生代地壳构造运动研究[J]. 地质力学学报, 2008,14(4):295-319.
doi: 10.3969/j.issn.1006-6616.2008.04.001 url: http://www.cnki.com.cn/Article/CJFDTotal-DZLX200804001.htm
[15] Gao M X . Study on late Cenozoic crustal tectonism[J]. Journal of Geomechanics, 2008,14(4):295-319.
[16] 李玶, 汪良谋 . 云南川西地区地震地质基本特征的探讨[J]. 地质科学, 1975,10(4):308-326.
url: http://www.cnki.com.cn/Article/CJFDTotal-DZKX197504001.htm
[16] Li P, Wang L M . Exploration of the seismo-geological features of the Yunnan-West Sichuan Region[J]. Scientia Geological Sinica, 1975,10(4):308-326.
[17] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology, 1982,10(12):611-616.
doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 url: https://pubs.geoscienceworld.org/geology/article/10/12/611-616/203380
[18] 付碧宏, 时丕龙, 王萍 , 等. 2008年汶川地震断层北川段的几何学与运动学特征及地震地质灾害效应[J]. 地球物理学报, 2009,52(2):485-495.
doi: url: http://d.wanfangdata.com.cn/Periodical/dqwlxb200902020
[18] Fu B H, Shi P L, Wang P , et al. Geometry and kinematics of the 2008 Wenchuan earthquake surface ruptures around the Qushan Town of Beichuan County,Sichuan:Implications for mitigation of seismic and geologic disasters[J]. Chinese Journal of Geophysics, 2009,52(2):485-495.
[19] Fu B H, Shi P L, Guo H D , et al. Surface deformation related to the 2008 Wenchuan earthquake,and mountain building of the Longmen Shan,eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2011,40(4):805-824.
doi: 10.1016/j.jseaes.2010.11.011 url: https://linkinghub.elsevier.com/retrieve/pii/S1367912010003366
[20] 李智武, 刘树根, 陈洪德 , 等. 龙门山冲断带分段-分带性构造格局及其差异变形特征[J]. 成都理工大学学报(自然科学版), 2008,35(4):440-454.
doi: 10.3969/j.issn.1671-9727.2008.04.014 url: http://d.wanfangdata.com.cn/Periodical/cdlgxyxb200804014
[20] Li Z W, Liu S G, Chen H D , et al. Structural segmentation and zonation and differential deformation across and along the Lomgmen thrust belt,West Sichuan,China[J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2008,35(4):440-454.
[21] 金文正, 汤良杰, 杨克明 , 等. 川西龙门山褶皱冲断带分带性变形特征[J]. 地质学报, 2007,81(8):1072-1080.
doi: 10.3321/j.issn:0001-5717.2007.08.007 url: http://www.cqvip.com/Main/Detail.aspx?id=25708793
[21] Jin W Z, Tang L J, Yang K M , et al. Deformation and zonation of the Longmenshan fold and thrust zone in the Western Sichuan Basin[J]. Acta Geologica Sinica, 2007,81(8):1072-1080.
[22] Liu S F, Qian T, Li W P , et al. Oblique closure of the northeastern Paleo-Tethys in central China[J]. Tectonics, 2015,34(3):413-434.
doi: 10.1002/2014TC003784 url: http://doi.wiley.com/10.1002/2014TC003784
[23] 贾营营, 付碧宏, 王岩 , 等. 青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应[J]. 第四纪研究, 2010,30(4):825-836.
doi: 10.3969/j.issn.1001-7410.2010.04.17 url: http://d.wanfangdata.com.cn/Periodical/dsjyj201004017
[23] Jia Y Y, Fu B H, Wang Y , et al. Late Cenozoic tectono-geomorphic growth and drainage response in the Longmen Shan fault zone,east margin of Tibet[J]. Quaternary Science, 2010,30(4):825-836.
[24] 李勇, 周荣军 , Densmore A L, 等. 青藏高原东缘大陆动力学过程与地质响应[M]. 北京: 地质出版社, 2006.
[24] Li Y, Zhou R J, Densmore A L , et al. The Response of Geological and Progress of Continental Dynamics of the Eastern Margin Tibetan Plateau[M]. Beijing: Geological Press, 2006.
[25] Densemore A L, Ellis M, Li Y , et al. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26(4):TC4005,1-17.
doi: 10.1029/2006TC001987 url: http://onlinelibrary.wiley.com/doi/10.1029/2006TC001987/pdf
[26] 白毛伟, 谢小平, 陈芝聪 , 等. 龙门山北东段山前涪江第四纪冲洪积扇地貌演化及其构造响应[J]. 沉积学报, 2017,35(1):85-92.
doi: 10.14027/j.cnki.cjxb.2017.01.009 url: http://d.wanfangdata.com.cn/Periodical/cjxb201701009
[26] Bai M W, Xie X P, Chen Z C , et al. Geomorphological evolution of the Quaternary alluvial fans and its response to tectonic activity along the Fujiang River,northeastern Longmen Shan[J]. Acta Sedimentologica Sinica, 2017,35(1):85-92.
[27] 刘振东, 涂汉明 . 中国地势起伏度统计单元的初步研究[J]. 热带地理, 1989,9(1):31-38.
url: http://www.cnki.com.cn/Article/CJFDTotal-RDDD198901004.htm
[27] Liu Z D, Tu H M . Study on statistical unit of relief amplitude in China[J]. Tropical Geography, 1989,9(1):31-38.
[28] 涂汉明, 刘振东 . 中国地势起伏度最佳统计单元的求证[J]. 湖北大学学报(自然科学版), 1990,12(3):266-271.
url: http://www.cqvip.com/QK/96466X/199003/279526.html
[28] Tu H M, Liu Z D . Demonstrating on optimum statistic unit of relief amplitude in China[J]. Journal of Hubei University(Nature Science), 1990,12(3):266-271.
[29] 陈立春, 陈杰, 刘进峰 , 等. 龙门山前山断裂北段晚第四纪活动性研究[J]. 地震地质, 2008,30(3):710-722.
doi: 10.3969/j.issn.0253-4967.2008.03.010 url: http://www.cqvip.com/Main/Detail.aspx?id=28330110
[29] Chen L C, Chen J, Liu J F , et al. Investigation of late Quaternary activity along the northern range front fault,Longmenshan[J]. Seismology and Geology, 2008,30(3):710-722.
[1] Xinxin SUI, Suwen SUI. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[2] Xinxin SUI, Suwen SUI, Kun LIU. Research and construction of interpretation result data management system toward remote sensing application[J]. Remote Sensing for Land & Resources, 2018, 30(3): 238-243.
[3] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[4] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[5] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
[6] LI Xiaomin, YAN Yunpeng, LIU Gang, LI Dongling, ZHANG Xing, ZHUANG Yongcheng. Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 141-148.
[7] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[8] SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
[9] LIU Dechang, TONG Qinlong, LIN Ziyu, YANG Guofang. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 136-143.
[10] XU Bing, FANG Chen. Data fusion methods of ZY-1 02C and ETM+ images and effect evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 80-85.
[11] XU Yueren, HE Honglin, CHEN Lize, SHEN Xuhui. Dynamic remote sensing interpretation of geological disasters in Nanping City of Fujian Province using CBERS serial data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 153-159.
[12] ZHANG Mingyang, MA Weifeng, TANG Xiangdan, LI Xianwei. Automatic mapping of the results of 3D remote sensing interpretation of geological disasters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 164-167.
[13] YU Feng-ming, HE Long-qing, WANG Lei. Remote Sensing Interpretation of Ductile Shear Zone in Wudang Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 124-131.
[14] WANG Chang-hai, LIU Deng-zhong, LIU Jin-long, HUANG Hui. Internal Structure and Assemblage Features of Tectonic Slices in Dong Cuo Melange Zone[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 75-78.
[15] LI Song, LI Hai-ying. A Comprehensive Study of Applying Remote Sensing in the Evaluation of Mineral Resource Potential: A Case Study of the Remote Sensing Application in Shanxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 111-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech