Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 238-243     DOI: 10.6046/gtzyyg.2018.03.32
|
Research and construction of interpretation result data management system toward remote sensing application
Xinxin SUI, Suwen SUI, Kun LIU
China Aero-Geophysical Survey and Remote Sensing Center for Land Resources, Beijing 100083, China
Download: PDF(2831 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract   Aim

ed at tackling the problems of data storage, management and application of remote sensing interpretation, and considering the needs of geological survey information service system, the authors established interpretation data system toward remote sensing application. Through the effective organization of map data, element layers and texts, with ArcGIS 10 and MapGIS K9 as the platform, and by using C# as the development language, the authors designed and constructed the database management system of remote sensing interpretation which is based on C/S mode. This system provides the flexible tools of importing data, query display and data system construction and maintenance. This system realizes the integrated management and service of the multiple format maps that are in scattered storage which ensures the effective utilization and sustainable development of the resources of remote sensing interpretation data.

Keywords remote sensing interpretation      result data      management system      database      integration     
:  TP79  
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinxin SUI
Suwen SUI
Kun LIU
Cite this article:   
Xinxin SUI,Suwen SUI,Kun LIU. Research and construction of interpretation result data management system toward remote sensing application[J]. Remote Sensing for Land & Resources, 2018, 30(3): 238-243.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.32     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/238
编码 类别 类别名称
3361 地质遥感填图 地层岩性、火成岩、断裂、区域构造单位
3362 矿产资源遥感调查 已知固体矿、固体矿产远景区、找矿靶区、已知油气田、油气远景评价区、有利构造带、矿产资源规划、矿山开发占地、矿山开采面、监测区矿权
3363 区域国土资源遥感调查 森林资源、旅游资源、地热资源、草地资源
3364 城市遥感调查 绿化
3371 工程地质遥感调查 地貌、地壳稳定性
3372 水文地质遥感调查 地表水资源、地下水资源
3373 地质灾害遥感调查 地震、活火山、泥石流滑坡崩塌、地面沉降、地裂缝、地面塌陷
3374 环境生态遥感调查 水土流失(土壤侵蚀)、土地沙化盐渍化现状、土地沙化盐渍化变迁、水污染、气象灾害、热岛现象、生态环境评价、气候
3375 土地资源遥感调查 土地利用现状、土地利用变迁、土壤、植被
3380 海洋及海岸带等遥感调查 海岸线、滩涂、海汊、海湾、岛屿
Tab.1  The directory of remote sensing interpretation map content
Fig.1  The storage structure of remote sensing interpretation result data
Fig.2  Overall framework of system
Fig.3  The function of database management system
Fig.4  The system main interface
Fig.5  The matching rule of element layer
Fig.6  The query and display interface of system
Fig.7  The system maintenance of layer vector library
[1] 王润生 . 遥感地质技术发展的战略思考[J].国土资源遥感, 2008(1):1-12,42.doi: 10.6046/gtzyyg.2008.01.01.
[1] Wang R S . On the development strategy of remote sensing technology in geology[J].Remote Sensing for Land and Resources, 2008(1):1-12.doi: 10.6046/gtzyyg.2008.01.01.
[2] 甘甫平, 王润生 . 遥感岩矿信息提取基础与技术方法研究[M]. 北京: 地质出版社, 2004.
[2] Gan F P, Wang R S. Study on the Basic and Technical Methods of Remote Sensing Information Extraction[M]. Beijing: Geology Press, 2004.
[3] 王治华 . 面向新世纪的滑坡、泥石流遥感技术[J]. 地球信息科学, 1999,1(2):71-74.
[3] Wang Z H . Technique of remote sensing for landslide and debris flows for the new century[J]. Geo-Information Science, 1999,1(2):71-74.
[4] 张礼中, 张永波, 周小元 , 等. 环境地质空间数据库查询系统设计与实现[J]. 计算机工程与应用, 2005,41(29):190-192.
[4] Zhang L Z, Zhang Y B, Zhou X Y , et al. The query system of environmental geology spacial database[J]. Computer Engineering and Applications, 2005,41(29):190-192.
[5] 许登平, 李晖, 庞丽杰 , 等. 全国林地“一张图”数据库建设及扩展应用[J].林业资源管理, 2015(5):36-43,171.
doi: 10.13466/j.cnki.lyzygl.2015.05.007 url: http://d.wanfangdata.com.cn/Periodical/lyzygl201505007
[5] Xu D P, Li H, Pang L J , et al. Research of key technology for national forest-land "one map" database[J].Forest Resources Management, 2015(5):36-43,171.
[6] 戴建旺, 百晓飞 . 第二次全国土地调查国家级数据库管理系统关键技术研究[J]. 中国土地科学, 2010,24(6):74-80.
[6] Dai J W, Bai X F . Research on the key technologies of national level database management system for the second national land survey[J]. China Land Science, 2010,24(6):74-80.
[7] 国土资源部.GX199900X-200X 国土资源信息高层分类编码及数据文件命名规则[S].
[7] Ministry of Land and Resources.GX199900X-200X Classification coding standard and data file naming rules of land and resources information[S].
[8] 徐园, 王卫京, 吴磊 . 面向防灾减灾业务应用的数据集成管理体系研究与实现[J].中国减灾, 2013(9):48-51.
[8] Xu Y, Wang W J, Wu L . Research and implementation of data integration management system for disaster prevention and mitigation[J].Disaster Reduction in China, 2013(9):48-51.
[1] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[2] YANG Wenna, ZHOU Liang, SUN Dongqi. Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept[J]. Remote Sensing for Natural Resources, 2021, 33(3): 211-218.
[3] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[4] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[5] Xiaoping XIE, Maowei BAI, Zhicong CHEN, Weibo LIU, Shuna XI. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land & Resources, 2019, 31(1): 237-246.
[6] Ke ZHANG, Jianzhong LIU, Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters[J]. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
[7] Xinxin SUI, Suwen SUI. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[8] Xun ZHOU, Yuebin WANG, Suhong LIU, Peixin YU, Xikai WANG. A machine learning algorithm for automatic identification of cultivated land in remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(4): 68-73.
[9] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[10] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[11] Yanzuo WANG, Wei ZHOU, Lei FENG. Application of main memory database to spatial query of mass ZY1-02C data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 238-242.
[12] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[13] NI Jinsheng, LIU Xiang, YANG Jinlin, PAN Jian, SU Xiaoyu. Research on content integration for multi-dynamic plotting information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 208-212.
[14] LI Wei, CHEN Xiuwan, PENG Xuefeng, XIAO Han. GNSS-R technique for soil moisture estimation: Framework and software implementation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 213-220.
[15] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech