Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (3) : 113-116     DOI: 10.6046/gtzyyg.2014.03.18
Technology Application |
Hyperspectral remote sensing inversion of soil salinity in north Shaanxi based on PLSR
LI Xiaoming1,2, WANG Shuguang1,2, HAN Jichang1,2
1. Shaanxi Land Engineering Construction Group, Xi'an 710075, China;
2. Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Land and Resources of China, Xi'an 710075, China
Download: PDF(1165 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The salinized soil in northern Shaanxi Province was chosen as the study object. The hyperspectral data were collected and the soil samples were analyzed. First, the correlation between the soil salinity and the reflectance were analyzed, and the characteristic bands were fitted. The usual regression and partial least squares regression (PLSR) analysis was used to study the inversion model of soil salinity, and some testing samples were used to compare the accuracies. The results show that 482 nm, 1 365 nm, 1 384 nm, 2 202 nm and 2 353 nm are five characteristic wavelengths, and the precision of inversion is satisfactory. The result of precision test indicates that the inversion model with PLSR calculated by Matlab is fairly good, and the correlation between the measured value and the predicted value is better.
Keywords TLS      LiDAR      landslide monitoring      summarization      review      prospect     
:  S156.4  
Issue Date: 01 July 2014
E-mail this article
E-mail Alert
Articles by authors
XIE Mowen
HU Man
DU Yan
Cite this article:   
XIE Mowen,HU Man,DU Yan, et al. Hyperspectral remote sensing inversion of soil salinity in north Shaanxi based on PLSR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 113-116.
URL:     OR
[1] 王遵亲,祝寿全,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993. Wang Z Q,Zhu S Q,Yu R P,et al.Salinized soils in China[M].Beijing:Science Press,1993.
[2] 杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845. Yang J S.Development and prospect of the research on salt-affected soils in China[J].Acta Pedologica Sinica,2008,45(5):837-845.
[3] 丁建丽,伍漫春,刘海霞,等.基于综合高光谱指数的区域土壤盐渍化监测研究[J].光谱学与光谱分析,2012,32(7):1918-1922. Ding J L,Wu M C,Liu H X,et al.Study on the soil salinization monitoring based on synthetical hyperspectral index[J].Spectroscopy and Spectral Analysis,2012,32(7):1918-1922.
[4] 王静,何挺,李玉环.基于高光谱遥感技术的土地质量信息挖掘研究[J].遥感学报,2005,9(4):438-445. Wang J,He T,Li Y H.Studying on extraction methods for land quality information based on hyperspectral data[J].Journal of Remote Sensing,2005,9(4):438-445.
[5] Dehaan R L,Taylor G R.Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization[J].Remote Sensing of Environment,2002,80(3):406-417.
[6] Farifteh J,Farshad A,George R J.Assessing salt-affected soils using remote sensing, solute modelling,and geophysics[J].Geoderma,2006,130(3-4):191-206.
[7] Farifteh J,Van der Meer F,Atzberger C,et al.Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods(PLSR and ANN)[J].Remote Sensing of Environment,2007,110(1):59-78.
[8] 刘焕军,张柏,王宗明,等.基于反射光谱特征的土壤盐碱化评价[J].红外与毫米波学报,2008,27(2):138-142. Liu H J,Zhang B,Wang Z M,et al.Soil saline-alkalization evaluation basing on spectral reflectance characteristics[J].Journal of Infrared and Millimeter Waves,2008,27(2):138-142.
[9] 吴代晖,范闻捷,崔要奎,等.高光谱遥感监测土壤含水量研究进展[J].光谱学与光谱分析,2010,30(11):3067-3071. Wu D H,Fan W J,Cui Y K,et al.Review of monitoring soil water content using hyperspectral remote sensing[J].Spectroscopy and Spectral Analysis,2010,30(11):3067-3071.
[10] 宋韬,鲍一丹,何勇.利用光谱数据快速检测土壤含水量的方法研究[J].光谱学与光谱分析,2009,29(3):675-677. Song T,Bao Y D,He Y.Research on the method for rapid detection of soil moisture content using spectral data[J].Spectroscopy and Spectral Analysis,2009,29(3):675-677.
[11] 鲍一丹,何勇,方慧,等.土壤的光谱特征及氮含量的预测研究[J].光谱学与光谱分析,2007,27(1):62-65. Bao Y D,He Y,Fang H,et al.Spectral characterization and N content prediction of soil with different particle size and moisture content[J].Spectroscopy and Spectral Analysis,2007,27(1):62-65.
[12] 易时来,邓烈,何绍兰,等.三峡库区柑桔园紫色土光谱特征及其与氮素相关性研究[J].光谱学与光谱分析,2009,29(9):2494-2498. Yi S L,Deng L,He S L,et al.Study on the correlation of spectral characteristic and nitrogen content of the soil in citrus orchard of Three Gorges Reservoir Area[J].Spectroscopy and Spectral Analysis,2009,29(9):2494-2498.
[13] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000. Lu R K.Methods for chemical analysis of soils[M].Beijing:Chinese Agriculture Science Press,2000.
[14] 翁永玲,戚浩平,方洪宾,等.基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J].土壤学报,2010,47(6):1255-1263. Weng Y L,Qi H P,Fang H B,et al.PLSR-based hyperspectral remote sensing retrieval of soil salinity of Chaka-Gonghe Basin in Qinghai Province[J].Acta Pedologica Sinica,2010,47(6):1255-1263.
[15] 陈祯.不同土壤含水率、体积质量及光谱反射率的关系模型[J].农业工程学报,2012,28(4):76-81. Chen Z.Relationship model among water content, bulk density and reflectivity of different soil[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(4):76-81.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[3] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[4] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[5] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[6] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[7] Lihua FU, Ce ZHANG. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 98-105.
[8] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[9] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[10] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[11] Honglin MA, Weijie JIA, Changliang FU, Wei LI. Extraction of geological structural and alteration information and the prediction of metallogenic favorable locations in northeastern Jeddah, Saudi Arabia[J]. Remote Sensing for Land & Resources, 2019, 31(3): 174-182.
[12] Ce ZHANG, Lihong PENG, En ZHANG, Lihua FU, Bing WANG. A study of metallogenic prognosis of the Dimunalike iron ore belt based on remote sensing and aeromagnetic data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 216-224.
[13] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[14] Sirui YANG, Zhaohui XUE, Ling ZHANG, Hongjun SU, Shaoguang ZHOU. Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River[J]. Remote Sensing for Land & Resources, 2018, 30(4): 33-40.
[15] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech