Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 118-125     DOI: 10.6046/gtzyyg.2015.02.19
Technology Application |
Land cover change and its impact on net primary productivity in China's typical temperate grassland system in the past 25 years: A study of the Huangfuchuan Watershed
XU Jiren1,2, DONG Jihong1,2, YANG Hongbing1,2
1. College of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
2. Jiangsu Key Laboratory of Resources and Environmental Information Engineering, Xuzhou 221116, China
Download: PDF(4938 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In this paper, the Huangfuchuan Watershed was chosen as the study area, and RS and GIS techniques were used to explore the land use change and NPP. With the combination of CASA model, the dynamic characteristics of NPP in 1987—2011 were studied. Land use structure changed obviously in the Huangfuchuan Watershed. The main trend of land use change was the gradual increase of construction land and woodland as well as the gradual decrease of water. The areas of arable land, grass, shrub, bare rock and sand were fluctuant, as shown by land use dynamic degree. The calculation of NPP model shows that the total value of NPP in 1987, 1995, 2000, 2007 and 2011 was 28.12 GgC, 53.47 GgC, 73.23 GgC, 157.92 GgC and 78.52 GgC. The analysis of land use change effects on NPP indicates that the main factor responsible for the increase of NPP was the transformation of the grassland to the shrub between 1987 and 1995, whereas the bare rock was the main factor responsible for the increase of NPP in 1995—2000. The change of shrub into grassland contributed mainly to the increase of NPP in 2000—2007, whereas the change of grassland into shrub contributed mainly to the reduction of NPP in 2007—2011. The results of the study is of great significance for rational utilization of temperate grassland resources and improvement of the fragile ecological environment.
Keywords aerosol type      aerosol optical thickness(AOT)      water vapor content(WV)      hyperspectra      atmospheric correction     
:  TP79  
  X171  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DIAN Yuanyong
FANG Shenghui
XU Yongrong
Cite this article:   
DIAN Yuanyong,FANG Shenghui,XU Yongrong. Land cover change and its impact on net primary productivity in China's typical temperate grassland system in the past 25 years: A study of the Huangfuchuan Watershed[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 118-125.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.19     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/118
[1] Leith H,Wittaker R H.Primary Productivity of the Biosphere[M].New York:Springer Verlag,1975:103-134.
[2] 方精云.全球生态学——气候变化与生态响应[M].北京:高等教育出版社,2000:78-89. Fang J Y.Global Ecology:Climate Change and Ecological Response[M].Beijing:Higher Education Press,2000:78-89.
[3] 冷疏影,宋长青,吕克解,等.区域环境变化研究的重要科学问题[J].自然科学进展,2001,11(2):222-224. Leng S Y,Song C Q,Lyu K J,et al.The important scientific problems of regional environmental change research[J].Progress in Natural Science,2001,11(2):222-224.
[4] Cramer W,Bondeau A,Woodward F I,et al.Global response of terrestrial ecosystem structure and function to CO2 and climate change:Results from six dynamic global vegetation models[J].Global Change Biology,2001,7(4):357-373.
[5] LeBauer D S,Treseder K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J].Ecology,2008,89(2):371-379.
[6] Gilmanov T G,Soussana J F,Aires L,et al.Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis[J].Agriculture Ecosystems & Environment,2007,121(1/2):93-120.
[7] 高志强,刘纪远,曹明奎,等.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响[J].中国科学D辑:地球科学,2004,34(10):946-957. Gao Z Q,Liu J Y,Cao M K,et al.The impact on the ecosystem productivity and the carbon cycle in agriculture and animal husbandry transition zone of the land use and climate change[J].Science in China Series D:Earth Sciences,2004,34(10):946-957.
[8] 刘志斌,刘茂松,徐驰,等.江阴市植被净初级生产力及碳汇价值分析[J].南京林业大学学报:自然科学版,2007,31(3):139-1421. Liu Z B,Liu M S,Xu C,et al.NPP and CO2 Assimilation value of vegetation in Jiangyin, Jiangsu Province[J].Journal of Nanjing Forestry University:Natural Sciences Edition,2007,31(3):139-1421.
[9] 徐昔保,杨桂山,李恒鹏.太湖流域土地利用变化对净初级生产力的影响[J].资源科学,2011,33(10):1940-1947. Xu X B,Yang G S,Li H P.Impacts of land use change on net primary productivity in the Taihu Basin,China[J].Resources Science,2011,33(10):1940-1947.
[10] 王原,黄玫,王祥荣.气候和土地利用变化对上海市农田生态系统净初级生产力的影响[J].环境科学学报,2010,30(3):641-648. Wang Y,Huang M,Wang X R.Impacts of land use and climate change on agricultural productivity in Shanghai[J].Acta Scientiae Circumstantiae,2010,30(3):641-648.
[11] 赵传燕,程国栋,邹松兵,等.西北地区自然植被净第一性生产力的空间分布[J].兰州大学学报:自然科学版,2009,45(1):42-49,55. Zhao C Y,Cheng G D,Zou S B,et al.Spatial distribution of net primary productivity of natural vegetation in the northwest China[J].Journal of Lanzhou University:Natural Sciences,2009,45(1):42-49,55.
[12] 张杰,潘晓玲,高志强,等.基于遥感-生态过程的绿洲-荒漠生态系统净初级生产力估算[J].干旱区地理,2006,29(2):255-261. Zhang J,Pan X L,Gao Z Q,et al.Estimation of net primary productivity of the oasis- desert ecosystems in arid west China based on RS-based ecological process[J].Arid Land Geography,2006,29(2):255-261.
[13] 穆少杰,李建龙,杨红飞,等.内蒙古草地生态系统近10年NPP时空变化及其与气候的关系[J].草业学报,2013,22(3):6-15. Mu S J,Li J L,Yang H F,et al.Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia[J].Acta Prataculturae Sinica,2013,22(3):6-15.
[14] 张艳丽,贾志斌.皇甫川流域不同土地利用对群落结构和植物多样性的影响[J].内蒙古大学学报:自然科学版,2008,39(3):325-331. Zhang Y L,Jia Z B.Effect of different land use types on diversity and community structure in Huangpuchuan Watershed[J].Journal of Inner Mongolia University,2008,39(3):325-331.
[15] 金争平,史培军,候福昌,等.黄河皇甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992:23-34. Jin Z P,Shi P J,Hou F C,et al.Soil Erosion System and Governance Model of Huangfuchuan Watershed[M].Beijing:Ocean Press,1992:23-34.
[16] 张峰,周广胜,王玉辉.基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟[J].植物生态学报,2008,32(4):786-797. Zhang F,Zhou G S,Wang Y H.Dynamics simulation of net primary productivity by a satellite data-driven CASA model in Inner Mongolian typical steppe,China[J].Journal of Plant Ecology,2008,32(4):786-797.
[17] 中华人民共和国国土资源部.TD/T1010-1999土地利用动态遥感监测规程[S].北京:地质出版社,1999. Ministry of Land and Resources of the People's Republic of China.TD/T1010-1999 The Standard of Land Use Dynamic Remote Sensing Monitoring[S].Beijing:Geological Publishing House,1999.
[18] 中国国家标准化管理委员会.GB/T21010-2007土地利用现状分类[S].北京:中国标准出版社,2007. Standardization administration of the People's Republic of China.GB/T21010-2007 Land-use Status Classification[S].Beijing:Standards Press of China,2007.
[19] 朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D].北京:北京师范大学,2005. Zhu W Q.Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation based on Remote Sensing[D].Beijing:Beijing Normal University,2005.
[20] Running S W,Coughlan J C.A general model of forest ecosystem processes for regional applicationsⅠ:Hydrologic balance,canopy gas exchange and primary production processes[J].Ecological Modelling,1988,42(2):125-154.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[6] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[7] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[8] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[9] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[10] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[11] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[12] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[13] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[14] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[15] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech