Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (3) : 110-115     DOI: 10.6046/gtzyyg.2016.03.18
|
Remote sensing investigation and influence factor analysis of glacier lake outburst potential in the Himalayas
LIU Chunling1, TONG Liqiang1, QI Shengwen2, ZHANG Shishu3, ZHENG Bowen2,4
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Key Laboratory of Shale Gas and Geoengineering, Institute of Geolgoy and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Chengdu Engineering Corporation Limited, Power Construction Corporation Limited of China, Chengdu 610072, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(3108 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Under the impact of formation conditions and natural environment, moraine-dammed lake outbursts take place frequently and then give rise to floods and mudslides, which menaces people's production, life, survival and development and becomes one of the great geohazard hidden dangers in the Himalayas. Using QuickBird and ETM data of remote sensing satellite and combining the investigations in field work, the authors studied the glacier lake outburst potential. The research results show that the areal distribution of glacier lakes presents a trend of decrease gradually from SE to NW in the Himalayas. Most of the glacier lakes are distributed in Shannan, Shigatse, Nyingchi and Ngari. The region of maximal distribution density is Lho-brag area of Shannan. It can be found that there are nineteen glacier lakes, all of which are moraine-dammed lakes that have outburst hazard potential. Among the nineteen glacier lakes, there are 13 glacier lakes having great outburst hazard potential and 6 glacier lakes having secondary great outburst hazard potential. It is also indicated that there are several trigger factors impacting instability of moraine-dammed lakes, whose foremost reasons are surge triggered by avalanche, bedrock collapse, and rock avalanche around the moraine-dammed lakes.

Keywords aerosol      high resolution      satellite remote sensing      inversion method     
:  TP79  
Issue Date: 01 July 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Yongxing
XUE Zhihang
Cite this article:   
CAO Yongxing,XUE Zhihang. Remote sensing investigation and influence factor analysis of glacier lake outburst potential in the Himalayas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 110-115.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.03.18     OR     https://www.gtzyyg.com/EN/Y2016/V28/I3/110

[1] 潘桂棠,丁俊,王立全,等.青藏高原区域地质调查重要新进展通报[J].地质通报,2002,21(11):787-793. Pan G T,Ding J,Wang L Q,et al.Important new progress in regional geological survey of the Qinghai-Tibet Plateau[J].Geological Bulletin of China,2002,21(11):787-793.
[2] 潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707. Pan G T,Li X Z,Wang L Q,et al.Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent region[J].Geological Bulletin of China,2002,21(11):701-707.
[3] 潘桂棠,王立全,李兴振,等.青藏高原区域构造格局及其多岛弧盆系的空间配置[J].沉积与特提斯地质,2001,21(3):1-26. Pan G T,Wang L Q,Li X Z,et al.The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau[J].Sedimentary Geology and Tethyan Geology,2001,21(3):1-26.
[4] 潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,2004,23(1):12-19. Pan G T,Wang L Q,Zhu D C.Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau[J].Geological Bulletin of China,2004,23(1):12-19.
[5] 纪鹏,郭华东,张露.近20年西昆仑地区冰川动态变化遥感研究[J].国土资源遥感,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17. Ji P,Guo H D,Zhang L.Remote sensing study of glacier dynamic change in West Kunlun mountains in the past 20 years[J].Remote Sensing for Land and Resources,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
[6] 赵福岳.青藏高原东部地区大陆冰盖遥感探测研究[J].国土资源遥感,2010,22(s1):39-44.doi:10.6046/gtzyyg.2010.s1.10. Zhao F Y.A tentative discussion on the continental glacier sheet in East Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):39-44.doi:10.6046/gtzyyg.2010.s1.10.
[7] 张瑞江,方洪宾,赵福岳,等.青藏高原近30年来现代冰川面积的遥感调查[J].国土资源遥感,2010,22(s1):45-48.doi:10.6046/gtzyyg.2010.s1.11. Zhang R J,Fang H B,Zhao F Y,et al.Remote sensing survey of existing glaciers in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):45-48.doi:10.6046/gtzyyg.2010.s1.11.
[8] 张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感,2010,22(s1):49-53.doi:10.6046/gtzyyg.2010.s1.12. Zhang R J,Fang H B,Zhao F Y.The evolution of existing glaciers in the past 30 years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):49-53.doi:10.6046/gtzyyg.2010.s1.12.
[9] 张瑞江.青藏高原冰川演变与地质灾害[J].国土资源遥感,2010,22(s1):54-58.doi:10.6046/gtzyyg.2010.s1.13. Zhang R J.The relationship between the evolution of glaciers and the geological hazards in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):54-58.doi:10.6046/gtzyyg.2010.s1.13.
[10] 张瑞江,赵福岳,方洪宾,等.青藏高原近30年现代雪线遥感调查[J].国土资源遥感,2010,22(s1):59-63.doi:10.6046/gtzyyg.2010.s1.14. Zhang R J,Zhao F Y,Fang H B,et al.Remote sensing survey of existing snowlines in the past 30 years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):59-63.doi:10.6046/gtzyyg.2010.s1.14.
[11] 杨景春.地貌学原理[M].3版.北京:北京大学出版社,2012. Yang J C.Principal of Geomorphology[M].3rd ed.Beijing:Beijing University Press,2012.
[12] 中国科学院水利部成都山地灾害与环境研究所,西藏自治区交通厅科学研究所.西藏泥石流与环境[M].成都:成都科技大学出版社,1999. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Institute for Traffic Scientific Research of Ministry of Transportation in Tibet.Debris Flow and Environment in Tibet[M].Chengdu:Chengdu Science and Technology Publishing House,1999.
[13] 中国科学院水利部成都山地灾害与环境研究所,西藏自治区交通厅科学研究所.川藏公路典型山地灾害研究[M].成都:成都科技大学出版社,1999. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Institute for Traffic Scientific Research of Ministry of Transportation in Tibet.A Study of Typical Mountain Hazards Along Sichuan-Tibet Highway[M].Chengdu:Chengdu Science and Technology Publishing House,1999.
[14] 童立强,祁生文,安国英,等.喜马拉雅山地区重大地质灾害遥感调查研究[M].北京:科学出版社,2013. Tong L Q,Qi S W,An G Y,et al.Remote Sensing Investigation on Great Geohazards in Himalaya Region[M].Beijing:Science Press,2013.
[15] 庄树裕.西藏喜马拉雅山地区冰湖溃决非线性预测研究[D].长春:吉林大学,2010. Zhuang S Y.Research on Nonlinear Prediction for Glacial Lake Outbursts in the Himalayas Area,Tibet[D].Changchun:Jilin University,2010.
[16] 刘伟.西藏典型冰湖溃决型泥石流的初步研究[J].水文地质工程地质,2006,33(3):88-92. Liu W.Preliminary study on debris flow induced by glacier lake outburst in Tibet[J].Hydrogeology & Engineering Geology,2006,33(3):88-92.
[17] 崔鹏,马东涛,陈宁生,等.冰湖溃决泥石流的形成、演化与减灾对策[J].第四纪研究,2003,23(6):621-628. Cui P,Ma D T,Chen N S,et al.The initiation, motion and mitigation of debris flow caused by glacial lake outburst[J].Quaternary Sciences,2003,23(6):621-628.
[18] 李吉均.西藏东南部冰川的最新研究[J].兰州大学学报,1975(2):115-123. Li J J.The newest advance on glacier in Southeastern Tibet[J].Journal of Lanzhou University,1975(2):115-123.
[19] 徐道明,冯清华.西藏喜马拉雅山区危险冰湖及其溃决特征[J].地理学报,1989,44(3):343-352. Xu D M,Feng Q H.Dangerous glacier lake and outburst features in Xizang Himalayas[J].Acta Geographica Sinica,1989,44(3):343-352.
[20] 徐道明.西藏波曲河冰湖溃决泥石流的形成与沉积特征[J].冰川冻土,1987,9(1):23-34,99. Xu D M.Characteristics of debris flow caused by outburst of glacial lakes on the Boqu River in Xizang,China[J].Journal of Glaciology and Geocryology,1987,9(1):23-34,99.
[21] 李德基,游勇.西藏波密米堆冰湖溃决浅议[J].山地研究,1992,10(4):219-224. Li D J,You Y.Bursting of the Midui moraine lake in Bomi,Xizang[J].Mountain Research,1992,10(4):219-224.

[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[3] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[4] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[5] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[6] MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
[7] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[8] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[9] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[10] Lihua FU, Ce ZHANG. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 98-105.
[11] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[12] Kailin LI, Chungui ZHANG, Kuo LIAO, Lichun LI, Hong WANG. Study of remote sensing atmosphere index of Fujian Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 151-158.
[13] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[14] Qifang XIE, Guoqing YAO, Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
[15] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech