Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 79-87     DOI: 10.6046/gtzyyg.2019.04.11
|
Remote sensing interpretation and spatial distribution characteristics of the Anhui segment of Tanlu fault zone based on multi-source data
Weidong ZHAO1,2,3, Yong ZHENG1, Haonan ZHANG1,2, Qiong JIANG3, Jiajia WEI1,2
1. School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
2. Intelligent Manufacturing Technology Institute, Hefei University of Technology, Hefei 230088, China
3. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
Download: PDF(6914 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In the previous study of the Anhui segment of Tanlu fault zone, it is generally believed that the Anhui segment of Tanlu fault zone is composed of the Wuhe-Hefei fault, the Shimenshan fault, the Chihe-Taihu fault and the Jiashan-Lujiang fault. However, there is no comprehensive and systematic research on the exact boundary position of the fault zone, especially the boundary of the Dabie Mountain in the southern part of the Anhui segment of the Tanlu fault zone. In view of such a situation, based on the multi-source data such as Landsat 8 OLI, ZY-3 and DEM data, the authors comprehensively utilized GIS spatial analysis and spatial statistics to perform remote sensing interpretation of the Anhui segment of Tanlu fault zone and statistical analysis of the interpretation results. The analysis shows the more accurate boundary range of the Anhui segment of Tanlu fault zone. The existing geological data prove that the boundary range is reasonable and reliable to some extent. The study shows that the spatial distribution characteristics of the north and south sections of the Anhui segment of Tanlu fault zone are different. The average trend of the northern section is about N23.5°E, the average width is about 25.99 km, the average trend of the southern section is about N34.9°E, and the average width is about 38.38 km, the overall trend of the whole Anhui segment of Tanlu fault zone is about N33.3°E, with an average width about 30.35 km. The fault zone presents a spatial distribution pattern of “short in the north and long in the south”, “ wide in the south and narrow in the north” and “the fault trend progressively moving northward from south to north”. The research results can provide an important reference for urban planning, engineering construction and geological disaster prevention within the Anhui segment of Tanlu fault zone.

Keywords Tanlu fault zone      remote sensing      multi-source data      spatial analysis     
:  TP79  
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weidong ZHAO
Yong ZHENG
Haonan ZHANG
Qiong JIANG
Jiajia WEI
Cite this article:   
Weidong ZHAO,Yong ZHENG,Haonan ZHANG, et al. Remote sensing interpretation and spatial distribution characteristics of the Anhui segment of Tanlu fault zone based on multi-source data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 79-87.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.11     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/79
Fig.1  Geological and geomorphic map of the Anhui segment of the Tanlu fault zone
Fig.2  Remote sensing images of the study area
断裂解译标志 主要内容
水平解译标志 色调 由于断裂两侧地层、构造不同而形成不同色调分界线,2种不同色调分界面呈线状延伸,如在地貌单元上表现为平原与丘陵、平原与山地的分界线等
水系 水系局部河段出现异常,如直角状急转弯、直线和折线河段,长而直的峡谷,水系呈现串珠状排列或呈线状分布
植被 植被稀少带、茂盛带或生长异常带,有规律分布
垂直解译标志 山脊线 山脊线等地貌要素的错动呈线状排列
低洼地形 低洼地形如线状沟谷等呈线状分布,且具有明显方向性
断层三角面 一系列断层三角面整齐排布,断层三角面在影像上常表现为暗色调阴影
综合景观 断裂两侧的色调、地貌、水系、纹理、植被以及DEM等综合景观存在差异
Tab.1  Interpretation marks of fracture structures in the study area
Fig.3  Technical flow chart of remote sensing interpretation
Fig.4  Remote sensing image interpretation of the Chihe—Taihu fault
Fig.5  Remote sensing interpretation of small faults in the Dabie Mountains
Fig.6  Comparison of fracture results by remote sensing
断裂名称 断裂走向(NNE向)
五河—合肥断裂 21.8
石门山断裂 21.2
池河—太湖断裂 31.2
嘉山—庐江断裂 20.1
黄梅断裂 44.2
Tab.2  Main fractures trends of Tanlu fault zone(°)
Fig.7  Fracture structure interpretation results in the study area
断裂编号 断裂走向 断裂编号 断裂走向 断裂编号 断裂走向 断裂编号 断裂走向
1 4.0 5 35.6 9 31.4 13 14.1
2 25.8 6 20.1 10 38.3
3 19.8 7 2.3 11 0.3
4 24.7 8 33.5 12 6.7
Tab.3  Fault trend of NNE trending fractures in region I(°)
断裂编号 断裂走向 断裂编号 断裂走向 断裂编号 断裂走向 断裂编号 断裂走向
1 44.4 11 35.2 21 40.6 31 24.5
2 27.7 12 38.7 22 34.4 32 25.6
3 13.9 13 4.5 23 39.1 33 6.7
4 21.1 14 35.3 24 34.4 34 29.8
5 44.7 15 31.9 25 40.1 35 37.7
6 36.3 16 12.4 26 26.7 36 39.1
7 44.4 17 29.4 27 30.6 37 39.3
8 28.1 18 28.4 28 20.6 38 36.5
9 28.0 19 27.3 29 43.6 39 33.2
10 7.5 20 18.7 30 25.6 40 39.9
Tab.4  Fault trend of NNE trending fractures in region Ⅱ(°)
Fig.8  Spatial distribution of the Anhui segment of the Tanlu fault zone
分段区域 东界位置 西界位置 所包含断裂 平均长
度/km
平均宽
度/km
平均走向/
(°)
面积/ km2
北段(嘉山—庐江段) 嘉山—庐江断裂 五河—合肥断裂 五河—合肥断裂、石门山断裂、池河—太湖断裂、嘉山—庐江断裂 261.09 25.99 23.5 6 544.17
南段(庐江—宿松段) 嘉山—庐江断裂与黄梅断裂安徽段的连接线 大别山区NNE向断裂密集区 池河—太湖断裂、黄梅断裂以及大别山区的40条NNE向次级断裂 136.74 38.38 34.9 4 564.95
全段合计 397.83 30.35 33.3 11 109.12
Tab.5  Segmentation and overall statistical information of the Anhui segment of the Tanlu fault zone
[1] 安徽省地质矿产局. 安徽省区域地质志[M]. 北京: 地质出版社, 1987: 501-507.
[1] Anhui Provincial Bureau of Geology and Mineral Resources. Regional Geology of Anhui Province[M]. Beijing: Geological Publishing House, 1987: 501-507.
[2] 张交东, 杨长春, 刘成斋 , 等. 郊庐断裂南段走滑和伸展断裂的深部结构及位置关系[J]. 地球物理学报, 2010,53(4):864-873.
doi: 10.3969/j.issn.0001-5733.2010.04.011
[2] Zhang J D, Yang C C, Liu C Z , et al. The deep structures of strike-slip and extension faults and their composite relationship in the southern segment of Tanlu fault zone[J]. Chinese Journal of Geophysics, 2010,53(4):864-873.
[3] Xu J W, Zhu G, Tong W X , et al. Formation and evolution of the Tancheng-Lujiang wrench fault system:A major shear system to the northern of the Pacific Ocean[J]. Tectonophysics, 1987,134(4):273-310.
[4] Xu J W, Zhu G . Tectonic models of the Tan-Lu fault zone,eastern China[J]. International Geology Review, 1994,36(8):771-784.
[5] 国家地震局地质研究所. 郯庐断裂[M]. 北京: 地震出版社, 1987.
[5] Institute of Geology State Seismological Bureau. Tanlu Fault[M]. Beijing: Seismological Press, 1987.
[6] 徐嘉炜, 马国锋 . 郯庐断裂带研究的十年回顾[J]. 地质论评, 1992,38(4):316-324.
[6] Xu J W, Ma G F . Review of the years (1981—1991) of research on the Tancheng-Lujiang fault zone[J]. Geological Review, 1992,38(4):316-324.
[7] 魏光兴, 刁守中, 周翠英 . 郯庐带地震活动性研究[M]. 北京: 地震出版社, 1993.
[7] Wei G X, Diao S Z, Zhou C Y. Study of Seismicity Along the Tancheng-Lujiang Seismic Zone[M]. Beijing: Seismological Press, 1993.
[8] 赵田, 朱光, 林少泽 , 等. 郯庐断裂带张八岭隆起段变质岩的原岩时代与变形机制[J]. 中国科学(地球科学), 2014,44(10):2112-2129.
[8] Zhao T, Zhu G, Lin S Z , et al. Protolith ages and deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu fault zone[J]. Science China(Earth Sciences), 2014,44(10):2112-2129.
[9] 汤家富, 李怀坤, 娄清 . 郯庐断裂南段研究进展与断裂性质讨论[J]. 地质通报, 2003,22(6):426-436.
[9] Tang J F, Li H K, Lou Q . Progress in the study of the southern segment of the Tanlu fault and a discussion of the nature of the fault[J]. Geological Bulletin of China, 2003,22(6):426-436.
[10] 李云平, 吴时国, 韩文功 , 等. 合肥盆地和郯庐断裂带南段深部地球物理特征研究[J]. 地球物理学报, 2006,49(1):115-122.
[10] Li Y P, Wu S G, Han W G , et al. A study on geophysical features of deep structures of the Hefei Basin and the southern Tan-Lu fault zone[J]. Chinese Journal of Geophysics, 2006,49(1):115-122.
[11] 聂峰, 石永红, 张忠宝 , 等. 安徽北部郯庐断裂两侧基底岩石年龄及对郯庐断裂初始开启时间的限定[J]. 科学通报, 2015,60(24):2315-2326.
[11] Nie F, Shi Y H, Zhang Z B , et al. The initial time of the Tan-Lu wrench fault:In the view of geochronological data of the basement rocks,northern Anhui Province[J]. Chinese Science Bulletin, 2015,60(24):2315-2326.
[12] 芮柏 . 对苏皖断裂带的初步研究(郯—庐断裂研究之二)[J]. 华东地质学院学报, 1988,11(1):1-10.
[12] Rui B . The preliminary study on the Su-Wan fault zone (two that studied Tan Lu fault zone)[J]. Journal of East China College of Geology, 1988,11(1):1-10.
[13] 宋传中, 王国强, 朱光 , 等. 郯庐断裂带桐城—庐江段的构造特征及演化[J]. 安徽地质, 1998,8(4):37-40.
[13] Song C Z, Wang G Q, Zhu G , et al. Structural characteristics and evolution of the Tongcheng to Lujiang section of the Tan Lu fault zone[J]. Geology of Anhui, 1998,8(4):37-40.
[14] 王小凤 . 郯庐断裂带[M]. 北京: 地质出版社, 2000.
[14] Wang X F. Tan-Lu Fault Zone[M]. Beijing: Geological Publishing House, 2000.
[15] 徐嘉炜 . 徐嘉炜论郯庐断裂带(论文选集)[M]. 合肥: 合肥工业大学出版社, 2015.
[15] Xu J W. Xu Jiawei on Tan Lu Fault Zone(Selected Papers)[M]. Hefei: Hefei University of Technology Press, 2015.
[16] 侯明金, 王永敏, Mercier J , 等. 郯庐断裂带(安徽部分)动力学演化及其构造意义[J]. 地质通报, 2003,22(2):105-112.
[16] Hou M J, Wang Y M, Mercier J , et al. Dynamic of the evolution and tectonic significance Tanlu fault zone(Anhui segment)[J]. Geological Bulletin of China, 2003,22(2):105-112.
[17] 赵英时 . 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
[17] Zhao Y S. Principles and Methods of Remote Sensing Application Analysis[M]. Beijing: Science Press, 2003.
[18] 齐信, 邵长生, 陈州丰 , 等. 多源遥感数据在断裂构造解译中的应用[J]. 大地测量与地球动力学, 2012,32(4):90-93.
[18] Qi X, Shao C S, Chen Z F , et al. Application of Multi-source remote sensing date in fault structure interretation[J]. Journal of Geo-desy and Geodynamics, 2012,32(4):90-93.
[19] Sabins F F . Remote Sensing:Principles and Interpretation[M]. New York:W.H.Freeman and Company, 1997.
[20] 杨韫澜, 韩玲, 韩晓勇 , 等. 基于资源三号和ETM+影像的断裂构造解译[J]. 地理空间信息, 2014,12(5):17-19.
[20] Yang Y L, Han L, Han X Y , et al. Fracture structure interpretation based on ZY-3 and ETM+[J]. Geospatial Information, 2014,12(5):17-19.
[21] 王鑫, 张景发, 姜文亮 , 等. 郯庐断裂带南段重力异常及不同深度的横向构造特征[J]. 地震地质, 2016,38(2):370-385.
doi: 10.3969/j.issn.0253-4967.2016.02.011
[21] Wang X, Zhang J F, Jiang W L , et al. Transverse structures features of different depths derived from bouguer gravity anomalies in the southern segment of Tan-Lu fault zone[J]. Seismology and Geolo-gy, 2016,38(2):370-385.
[22] 姚大全, 汤有标, 刘加灿 , 等. 大别山东北部基岩区断裂活动习性的综合研究[J]. 地震地质, 1999,21(1):63-68.
[22] Yao D Q, Tang Y B, Liu J C , et al. A synthetical study on active behavior of fault in bedrock area of northeastern Dabie Mountain[J]. Seismology and Geology, 1999,21(1):63-68.
[23] 张交东, 刘德良, 林会喜 , 等. 郯庐断裂带南段巨型正花状构造的发现及地质意义[J]. 中国科学技术大学学报, 2003,33(4):486-490.
[23] Zhang J D, Liu D L, Lin H X , et al. Discovery of the giant positive-flower-structure in the southern part of Tanlu fault and it’s geological significance[J]. Journal of University of Science and Technology of China, 2003,33(4):486-490.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[3] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[4] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[5] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[6] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[7] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[8] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[9] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[10] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[11] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[12] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[13] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[14] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[15] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech