Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 30-36     DOI: 10.6046/gtzyyg.2018.01.05
Orginal Article |
A change detection method for vector map and remote sensing imagery based on object heterogeneity
Liang LI1(), Lei WANG1, Kai WANG2, Sheng LI1
1. The Third Academy of Engineering of Surveying and Mapping, Chengdu 610500, China
2. Planning and Research Institute of Resettlement, Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
Download: PDF(1501 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to realize the automatic change detection with vector map and remote sensing imagery, a change detection method based on the object heterogeneity for vector map and remote sensing imagery is proposed in the paper. Image segmentation under the constraint of vector map was employed to get image objects using marker-based watershed algorithm. The features of the object were extracted by histogram which describes both gray feature and texture feature. The histogram intersection distance was adopted to measure the feature distance. The object heterogeneity was built by the average of the distance between the object and the other objects with the same class in old period. Change/nochange label of the objects can be determined by comparison the object heterogeneity with the heterogeneity threshold of the class which was calculated by Maximum Entropy Principle automatically. Experiments on QuickBird remote sensing images verified the effectiveness of the proposed method ,and the correct rate of the change detection is up to 95%.

Keywords object      object heterogeneity      image segmentation      histogram intersection distance      maximum entropy     
:  TP751.1  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liang LI
Lei WANG
Kai WANG
Sheng LI
Cite this article:   
Liang LI,Lei WANG,Kai WANG, et al. A change detection method for vector map and remote sensing imagery based on object heterogeneity[J]. Remote Sensing for Land & Resources, 2018, 30(1): 30-36.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.05     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/30
Fig.1  Flowchart of proposed method
Fig.2  Diagram of image segmentation constrained by vector map
Fig.3  Diagram of object histogram features
Fig.4  Diagram of object class heterogeneity
Fig.5  Experimental data
Fig.6  Relationship between change detection accuracy and gray level
Fig.7  Comparison of change detection results by using different methods
变化检测方法 正确率 误检率 漏检率
像斑灰度均值法 92 39 45
本文方法 95 23 31
Tab.1  Comparison of change detection results by using two methods(%)
项目 检测未变化
像元/个
检测变化
像元/个
像元合计/个
实际未变化像元/个 1 736 367 42 604 1 778 971
实际变化像元/个 63 778 143 885 207 663
合计像元/个 1 800 145 186 489 1 986 634
正确率/% 95
误检率/% 23
漏检率/% 31
Tab.2  Confusion matrix of change detection results by using proposed method
[1] 黄维,黄进良,王立辉,等.基于PCA的变化向量分析法遥感影像变化检测[J].国土资源遥感,2016,28(1):22-27.doi:10.6046/gtzyyg.2016.01.04.
[1] Huang W,Huang J L,Wang L H,et al.Remote sensing image change detection based on change vector analysis of PCA component[J].Remote Sensing for Land and Resources,2016,28(1):22-27.doi:10.6046/gtzyyg.2016.01.04.
[2] Xu M,Cao C X,Zhang H,et al.Change detection of an earthquake-induced barrier lake based on remote sensing image classification[J].International Journal of Remote Sensing,2010,31(13):3521-3534.
[3] 赵敏,陈卫平,王海燕.基于遥感影像变化检测技术的地形图更新[J]. 测绘通报, 2013(4):65-67.
[3] Zhao M,Chen W P,Wang H Y.Updating of topographic maps based on change detection for remote sensing image[J]. Bulletin of Surveying and Mapping, 2013(4):65-67.
[4] Mas J F.Monitoring land-cover changes:A comparison of change detection techniques[J].International Journal of Remote Sensing,1999,20(1):139-152.
[5] Lu D,Mausel P,Brondízio E,et al.Change detection techniques[J].International Journal of Remote Sensing,2004,25(12):2365-2401.
[6] 李德仁. 利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(s1):7-12.
[6] Li D R.Change detection from remote sensing images[J].Geomatics and Information Science of Wuhan University,2003,28(s1):7-12.
[7] Walter V.Object-based classification of remote sensing data for change detection[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,58(3/4):225-238.
[8] 张继贤,杨贵军.单一时相遥感数据土地利用与覆盖变化自动检测方法[J].遥感学报,2005,9(3):294-299.
[8] Zhang J X,Yang G J.Automatic land use and land cover change detection with one temporary remote sensing image[J].Journal of Remote Sensing,2005,9(3):294-299.
[9] 谢仁伟,牛铮,孙睿,等.基于多波段统计检验的土地利用变化检测[J].国土资源遥感,2009,21(2):66-70.doi:10.6046/gtzyyg.2009.02.14.
[9] Xie R W,Niu Z,Sun R,et al.The detection of land use change based on the statistic test with multi-band image[J].Remote Sensing for Land and Resources,2009,21(2):66-70.doi:10.6046/gtzyyg.2009.02.14.
[10] Meyer F.Color image segmentation[C]//Proceedings of the international conference on image processing and its applications.Maastricht, Netherlands:IEEE,1992:303-306.
[11] 巫兆聪,胡忠文,张谦,等.结合光谱、纹理与形状结构信息的遥感影像分割方法[J].测绘学报,2013,42(1):44-50.
[11] Wu Z C,Hu Z W,Zhang Q,et al.On combining spectral, textural and shape features for remote sensing image segmentation[J].Acta Geodaetica et Cartographica Sinica,2013,42(1):44-50.
[12] Wang A P,Wang S G,Lucieer A.Segmentation of multispectral high-resolution satellite imagery based on integrated feature distributions[J].International Journal of Remote Sensing,2010,31(6):1471-1483.
[13] 李亮,张云,李胜,等.融合空间关系的遥感图像分类[J].国土资源遥感,2017, 29(3):10-16. doi:10.6046/gtzyyg.2017.03.02.
[13] Li L,Zhang Y,Li S,et al.Classification of remote sensing images based on the fusion of spatial relationship[J].Remote Sensing for Land and Resources,2017,29(3):10-16. doi:10.6046/gtzyyg.2017.03.02.
[14] Ojala T,Pietikäinen M.Unsupervised texture segmentation using feature distributions[J].Pattern Recognition,1999,32(3):477-486.
[15] 尤红建,傅琨.基于分布模型差异的SAR变化检测[J].武汉大学学报(信息科学版),2008,33(5):454-456.
[15] You H J,Fu K.SAR change detection based on cluster distribution divergence[J].Geomatics and Information Science of Wuhan University,2008,33(5):454-456.
[16] Swain M J,Ballard D H.Color indexing[J].International Journal of Computer Vision,1991,7(1):11-32.
[17] Chen K M,Chen S Y.Color texture segmentation using feature distributions[J].Pattern Recognition Letters,2002,23(7):755-771.
[18] Otsu N.A threshold selection method from gray-level histograms[J].Automatica,1975,11:23-27.
[19] Sahoo P,Wilkins C,Yeager J.Threshold selection using Renyi’s entropy[J].Pattern Recognition,1997,30(1):71-84.
[20] 李亮,舒宁,王凯,等.融合多特征的遥感影像变化检测方法[J].测绘学报,2014,43(9):945-953.
[20] Li L, Shu N, Wang K, et al.Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartographica Sinica,2014,43(9):945-953.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[3] CHEN Jing, CHEN Jingbo, MENG Yu, DENG Yupeng, JIE Yongshi, ZHANG Yi. Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints[J]. Remote Sensing for Natural Resources, 2021, 33(3): 54-62.
[4] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[5] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[6] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
[7] ZHANG Peng, LIN Cong, DU Peijun, WANG Xin, TANG Pengfei. Accurate monitoring of ecological redline areas in Nanjing City using high resolution satellite imagery[J]. Remote Sensing for Land & Resources, 2020, 32(3): 157-164.
[8] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[9] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[10] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[11] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[12] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[13] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[14] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[15] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech