Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 148-155     DOI: 10.6046/gtzyyg.2018.04.22
|
Land use change detection based on multi-source data
Zhan ZHAO, Wang XIA, Li YAN
School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
Download: PDF(6883 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Annual land use change survey is very important for keeping the land use data of China up-to-date. Currently, Land use change information acquisition is mainly based on artificial visual interpretation, which is low in efficiency. A new method of land use change detection based on multi-source data is presented in this paper. Classification samples for current phase image are acquired form previous phase land use vector data through a processing of sample refining. So automatic classification for current phase image can be implemented, which makes automatic change detected by comparing classification result with previous phase land use. The multivariate alteration detection (MAD) transformation method for the two phase image is used to eliminate pseudo change. The changed polygon objects with accuracy boundary are extracted based on change detect. Experiment shows that the proposed method is more effective with working time less than half that of the traditional method, and can better find real land use change without omission.

Keywords change detection      land use      multi-source data     
:  P237.3TP751  
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhan ZHAO
Wang XIA
Li YAN
Cite this article:   
Zhan ZHAO,Wang XIA,Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.22     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/148
Fig.1  Experiment data in Dorbet Mongolian Autonomous County
Fig.2  Experiment data in Changsha County
Fig.3  Technical flow of change detection and extraction
Fig.4  Flow chart of samples refining
Fig.5  Processing results of experiment data in Dorbet Mongolian Autonomous County
Fig.6  Processing results of experiment data in Changsha County
Fig.7  Comparison of results of the proposed method and traditional method
[1] Radke R J, Andra S , AlKofahi O,et al.Image change detection algorithms:A systematic survey[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2005,14(3):294-307.
doi: 10.1109/TIP.2004.838698 pmid: 15762326 url: http://ieeexplore.ieee.org/document/1395984/
[2] Bovolo F, Bruzzone L, Marconcini M . A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(7):2070-2082.
doi: 10.1109/TGRS.2008.916643 url: http://ieeexplore.ieee.org/document/4539638/
[3] Roy M, Ghosh S, Ghosh A . A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system[J]. Information Sciences, 2014,269(8):35-47.
doi: 10.1016/j.ins.2014.01.037 url: https://linkinghub.elsevier.com/retrieve/pii/S0020025514000735
[4] Nielsen A A . The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2007,16(2):463-478.
doi: 10.1109/TIP.2006.888195 pmid: 17269639 url: http://ieeexplore.ieee.org/document/4060945/
[5] Chen J, Lu M, Chen X , et al. A spectral gradient difference based approach for land cover change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,85(2):1-12.
doi: 10.1016/j.isprsjprs.2013.07.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271613001792
[6] Yuan Y, Lyu H B, Lu X Q . Semi-supervised change detection method for multi-temporal hyperspectral images[J]. Neurocomputing, 2015,148:363-375.
doi: 10.1016/j.neucom.2014.06.024 url: https://linkinghub.elsevier.com/retrieve/pii/S092523121400767X
[7] Kleynhans W, Salmon B P, Olivier J C , et al. Land cover change detection using autocorrelation analysis on MODIS time-series data:Detection of new human settlements in the Gauteng Province of South Africa[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(3):777-783.
doi: 10.1109/JSTARS.2012.2187177 url: http://ieeexplore.ieee.org/document/6171875/
[8] Kleynhans W, Salmon B P, Wessels K J , et al. Rapid detection of new and expanding human settlements in the Limpopo Province of South Africa using a spatio-temporal change detection method[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,40:74-80.
doi: 10.1016/j.jag.2015.04.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243415000884
[9] He C Y, Shi P J, Xie D Y , et al. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach[J]. Remote Sensing Letters, 2010,1(4):213-221.
doi: 10.1080/01431161.2010.481681 url: http://www.tandfonline.com/doi/abs/10.1080/01431161.2010.481681
[10] Huang X, Zhang L P, Zhu T T . Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(1):105-115.
doi: 10.1109/JSTARS.2013.2252423 url: http://ieeexplore.ieee.org/document/6509456/
[11] Varshney A . Improved NDBI differencing algorithm for built-up regions change detection from remote-sensing data:An automated approach[J]. Remote Sensing Letters, 2013,4(5):504-512.
doi: 10.1080/2150704X.2013.763297 url: http://www.tandfonline.com/doi/abs/10.1080/2150704X.2013.763297
[12] Melgani F, Moser G, Serpico S B. Unsupervised change-detection methods for remote-sensing images [C]//Serpico SB.Proceedings of the Society of Photo-optical Instrumentation Engineers(SPIE). 2002,4541:211-222.
[13] 杜培军, 柳思聪 . 融合多特征的遥感影像变化检测[J]. 遥感学报, 2012,16(4):663-677.
[13] Du P J, Liu S C . Change detection from multi-temporal remote sensing images by integrating multiple features[J]. Journal of Remote Sensing, 2012,16(4):663-677.
[14] Halmy M W A, Gessler P E, Hicke J A , et al. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA[J]. Applied Geography, 2015,63:101-112.
doi: 10.1016/j.apgeog.2015.06.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0143622815001599
[15] Castellana L , D’Addabbo A,Pasquariello G.A composed supervised/unsupervised approach to improve change detection from remote sensing[J]. Pattern Recognition Letters, 2007,28(4):405-413.
doi: 10.1016/j.patrec.2006.08.010 url: http://linkinghub.elsevier.com/retrieve/pii/S0167865506002200
[16] Singh P, Kato Z, Zerubia J. A multilayer markovian model for change detection in aerial image pairs with large time differences [C]// IEEE.2014 22nd International Conference on Pattern Recognition (ICPR).Stockholm, 2014: 924-929.
[17] Benedek C, Szirányi T . Change detection in optical aerial images by a multilayer conditional mixed Markov model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(10):3416-3430.
doi: 10.1109/TGRS.2009.2022633 url: http://ieeexplore.ieee.org/document/5169964/
[18] Szirányi T, Shadaydeh M . Segmentation of remote sensing images using similarity-measure-based fusion-MRF model[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(9):1544-1548.
doi: 10.1109/LGRS.2014.2300873 url: http://ieeexplore.ieee.org/document/6730687/
[19] Huang Z, Jia X P . Integrating remotely sensed data,GIS and expert knowledge to update object-based land use/land cover information[J]. International Journal of Remote Sensing, 2012,33(4):905-921.
doi: 10.1080/01431161.2010.536182 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2010.536182
[20] Hussain M, Chen D M, Cheng A , et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80:91-106.
doi: 10.1016/j.isprsjprs.2013.03.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271613000804
[21] 张剑清, 佘琼, 潘励 . 基于LBP/C纹理的遥感影像居民地变化检测[J]. 武汉大学学报(信息科学版), 2008,33(1):7-11.
url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb200801002
[21] Zhang J Q, She Q, Pan L . Change detection of residential area by remote sensing image based on LBP/C texture[J]. Geomatics and Information Science of Wuhan University, 2008,33(1):7-11.
[22] Bouziani M, Goïta K, He D C . Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):143-153.
doi: 10.1016/j.isprsjprs.2009.10.002 url: http://linkinghub.elsevier.com/retrieve/pii/S092427160900121X
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[5] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[6] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[7] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[8] WU Jiang, LIU Chun, YING Shen, YU Ting. Spatial delineation methods of urban areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 89-97.
[9] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[10] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[11] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[12] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[13] XIAO Dongsheng, LIAN Hong. Population spatialization based on geographically weighted regression model considering spatial stability of parameters[J]. Remote Sensing for Natural Resources, 2021, 33(3): 164-172.
[14] DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. Surface albedos of different land use types in the Junggar Basin[J]. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
[15] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech