Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 33-41     DOI: 10.6046/gtzyyg.2019.01.05
|
Hyperspectral imagery anomaly detection based on band selection and learning dictionary
Zengfu HOU1, Rongyuan LIU2, Bokun YAN2, Kun TAN1()
1.Key Laboratory for Land Environment and Disaster Monitoring of NASG,China University of Mining and Technology, Xuzhou 221116,China
2.China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(4868 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the large quantities of redundant information in the hyperspectral imagery, the traditional anomaly detection algorithm using the overall hyperspectral spectrum should consume a larger amount of computing time. Based on the linear prediction and learning dictionary, the authors put forward a novel algorithm. Compared with other low rank representation methods, the linear prediction method with the similarity of the band is utilized to find the least similar band subsets, and then the learning dictionary is implemented to obtain the learning dictionary which can represent the background information of the imagery. In addition, the imagery is divided into low rank matrix and sparse matrix via the low rank and decomposition. Finally, the traditional RXD (Reed-X detector) detection algorithm is utilized to detect the sparse image anomaly. Compared with other methods, the proposed method performs better with lower computational cost. Experimental results demonstrate that the selection of some bands including original information can achieve a good performance without corrupting the original information. It is a fine technique to apply to the hyperspectral imagery anomaly detection.

Keywords hyperspectral      band similarity      linear prediction      learning dictionary      anomaly detection      low rank decomposition      sparse     
:  TP79  
Corresponding Authors: Kun TAN     E-mail: tankuncu@gmail.com
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zengfu HOU
Rongyuan LIU
Bokun YAN
Kun TAN
Cite this article:   
Zengfu HOU,Rongyuan LIU,Bokun YAN, et al. Hyperspectral imagery anomaly detection based on band selection and learning dictionary[J]. Remote Sensing for Land & Resources, 2019, 31(1): 33-41.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.05     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/33
Fig.1  Framework of the proposed method
Fig.2  HyMap data set
Fig.3  Detection results and ROC curves of HyMap simulation data set
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.748 35 0.832 27 0.905 54 0.933 74 0.937 00
时间/s 0.538 100.000 165.900 60.300 49.180
Tab.1  Comparison of AUC and execution time using HyMap simulation data
Fig.4  HYDICE data set
Fig.5  Detection results and ROC curves of HYDICE data set
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.987 23 0.949 27 0.973 19 0.997 27 0.997 52
时间/s 0.178 1 61.440 0 98.380 0 85.370 0 56.140 0
Tab.2  Comparison of AUC and execution time using HYDICE data set
Fig.6  Hyperion data set
Fig.7  Detection results and ROC curves of Hyperion data set
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.997 82 0.730 53 0.999 62 0.999 60 0.999 83
时间/s 0.331 6 176.50 276.60 110.60 83.58
Tab.3  Comparison of AUC and execution time using Hyperion data set
Fig.8  Hyspex data set
Fig.9  Detection results and ROC curves of Hyspex data set
指标 GRX LRX UNRS-MD LRRaLD LPaBS-
LRRaLD
AUC 0.848 51 0.654 31 0.692 50 0.877 18 0.910 69
时间/s 5.338 4 494 5 500 430.5 109.5
Tab.4  Comparison of AUC and execution time using Hyspex data set
[1] 钮宇斌, 王斌 . 基于低秩表示和学习字典的高光谱图像异常探测[J]. 红外与毫米波学报, 2016,35(6):731-740.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ161230000403Zw3y6B
[1] Niu Y B, Wang B . Hyperspectral anomaly detection using low-rank representation and learned dictionary[J]. Journal of Infrared and Millimeter Waves, 2016,35(6):731-740.
[2] Reed I S, Yu X . Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1990,38(10):1760-1770.
doi: 10.1109/29.60107 url: http://ieeexplore.ieee.org/document/60107/
[3] Matteoli S, Diani M, Corsini G. A kurtosis-based test to efficiently detect targets placed in close proximity by means of local covariance-based hyperspectral anomaly detectors [C]//3rd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Lisbon:IEEE, 2011: 1-4.
[4] Molero J M, Garzón E M, García I . Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(2):801-814.
doi: 10.1109/JSTARS.2013.2238609 url: http://ieeexplore.ieee.org/document/6412738/
[5] Taitano Y P, Geier B A, Bauer K W . A locally adaptable iterative RX detector[J].Eurasip Journal on Advances in Signal Processing, 2010(1):1-10.
doi: 10.1155/2010/341908 url: http://link.springer.com/article/10.1155/2010/341908
[6] Guo Q, Zhang B, Ran Q , et al. Weighted-RXD and linear filter-based RXD:Improving background statistics estimation for anomaly detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6):2351-2366.
doi: 10.1109/JSTARS.2014.2302446 url: http://ieeexplore.ieee.org/document/6782328/
[7] Kwon H, Nasrabadi N M . Kernel RX-algorithm:A nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(2):388-397.
doi: 10.1109/TGRS.2004.841487 url: http://ieeexplore.ieee.org/document/1386510/
[8] 张兵 . 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016,20(5):1062-1090.
doi: 10.11834/jrs.20166179 url: http://www.cnki.com.cn/Article/CJFDTotal-YGXB201605032.htm
[8] Zhang B . Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016,20(5):1062-1090.
[9] Xu Y, Wu Z, Li J . Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(4):1990-2000.
doi: 10.1109/TGRS.2015.2493201 url: http://ieeexplore.ieee.org/document/7322257/
[10] Li W, Du Q . Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(3):1463-1474.
doi: 10.1109/TGRS.2014.2343955 url: http://ieeexplore.ieee.org/document/6876207/
[11] 赵锐, 杜博, 张良培 . 一种基于核特征空间的鲁棒性高光谱异常探测方法[J]. 光子学报, 2013,42(8):883-890.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ130925000156RoUqXt
[11] Zhao R, Du B, Zhang L P . An anomaly detection method for hyperspectral imagery in kernel feature space based on robust analysis[J]. Acta Photonica Sinica, 2013,42(8):883-890.
[12] 张乐飞, 张良培, 陶大程 . 张量分类算法的遥感影像目标探测[J]. 遥感学报, 2010,14(3):519-533.
url: http://www.cnki.com.cn/Article/CJFDTotal-YGXB201003012.htm
[12] Zhang L F, Zhang L P, Tao D C . Tensor-based learning machine for remotely sensed image target detection[J]. Journal of Remote Sensing, 2010,14(3):519-533.
[13] 彭波, 张立福, 张鹏 , 等. Cholesky分解的逐像元实时高光谱异常探测[J]. 遥感学报, 2017,21(5):739-748.
url: http://www.cnki.com.cn/Article/CJFDTotal-YGXB201705008.htm
[13] Peng B, Zhang L F, Zhang P , et al. A real-time sample-wise hyperspectral anomaly detection algorithm using Cholesky decomposition[J]. Journal of Remote Sensing, 2017,21(5):739-748.
[14] Huang S Y, Yeh Y R, Eguchi S . Robust kernel principal component analysis[J]. Neural Computation. 2009,21(11):3179-3213.
doi: 10.1162/neco.2009.02-08-706 pmid: 19686071 url: http://www.mitpressjournals.org/doi/10.1162/neco.2009.02-08-706
[15] Chen S Y, Yang S M, Kalpakis K, et al. Low-rank decomposition-based anomaly detection [C]//Proceedings of the SPIE Defense,Security,and Sensing. 2013,8743.
[16] Liu G, Lin Z, Yan S , et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184.
doi: 10.1109/TPAMI.2012.88 pmid: 22487984 url: http://ieeexplore.ieee.org/document/6180173/
[17] Niu Y, Wang B. A novel hyperspectral anomaly detector based on low-rank representation and learned dictionary [C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Beijing:IEEE, 2016.
[18] Honeine P . Online kernel principal component analysis:A reduced-order model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(9):1814-1826.
doi: 10.1109/TPAMI.2011.270 pmid: 22201059 url: http://ieeexplore.ieee.org/document/6112772/
[19] Wang J, Chang C I . Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(6):1586-1600.
doi: 10.1109/TGRS.2005.863297 url: http://ieeexplore.ieee.org/document/1634722/
[20] Weiland S, Van Belzen F . Singular value decompositions and low rank approximations of tensors[J]. IEEE Transactions on Signal Processing, 2010,58(3):1171-1182.
doi: 10.1109/TSP.2009.2034308 url: http://ieeexplore.ieee.org/document/5286282/
[21] Su M C, Chang H T . Fast self-organizing feature map algorithm[J]. IEEE Transactions on Neural Networks, 2000,11(3):721-733.
doi: 10.1109/72.846743 pmid: 18249799 url: http://ieeexplore.ieee.org/document/846743/
[22] 哈斯巴干, 马建文, 李启青 , 等. 多波段遥感数据的自组织神经网络降维分类研究[J]. 武汉大学学报(信息科学版), 2004,29(5):461-465.
doi: 10.3321/j.issn:1671-8860.2004.05.019 url: http://www.cqvip.com/Main/Detail.aspx?id=9754354
[22] Hasi B G, Ma J W, Li Q Q , et al. Dimension reduction of self-organized neural network classification for multi-band satellite data[J]. Geomatics and Information Science of Wuhan University. 2004,29(5):461-465.
[23] 杜培军, 王小美, 谭琨 , 等. 利用流形学习进行高光谱遥感影像的降维与特征提取[J]. 武汉大学学报(信息科学版), 2011,36(2):148-152.
url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH201102005.htm
[23] Du P J, Wang X M, Tan K , et al. Dimensionality reduction and feature extraction from hyperspectral remote sensing imagery based on manifold learning[J]. Geomatics and Information Science of Wuhan University. 2011,36(2):148-152.
[24] 李恒凯, 吴立新, 李发帅 . 面向土地利用分类的HJ-1 CCD影像最佳分形波段选择[J]. 遥感学报, 2013,17(6):1572-1586.
doi: 10.11834/jrs.20132318 url: http://d.wanfangdata.com.cn/Periodical/ygxb201306017
[24] Li H K, Wu L X, Li F S , Optimal fractal band selection on HJ-1 CCD image for land use classification[J]. Journal of Remote Sensing, 2013,17(6):1572-1586.
[25] Lu X Q, Li J L. A remote sensing images feature selection approach based on ant colony algorithm [C]//The 2nd International Conference on Industrial Mechatronics and Automation. Wuhan:IEEE, 2010.
[26] Zhou S, Zhang J P, Su B K. Feature selection and classification based on ant colony algorithm for hyperspectral remote sensing images [C]//The 2nd International Congress on Image and Signal Processing.Tianjin:IEEE, 2009.
[27] 叶志伟, 郑肇葆, 万幼川 , 等. 基于蚁群优化的特征选择新方法[J]. 武汉大学学报(信息科学版), 2007,32(12):1127-1130.
doi: 10.3969/j.issn.1671-8860.2007.12.010 url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb200712010
[27] Ye Z W, Zheng Z B, Wan Y C , et al. A novel approach for feature selection based on ant colony optimization algorithm[J]. Geomatics and Information Science of Wuhan University, 2007,32(12):1127-1130.
[28] 周爽 . 蚁群算法在高光谱图像降维和分类中的应用研究[D]哈尔滨:哈尔滨工业大学, 2010.
[28] Zhou S . Research on the Application of Ant Colony Algorithm in the Dimentionality Reduction and Classification for Hyperspectral Image [D]Harbin:Harbin Institute of Technology, 2010.
[29] Tan K, Li E, Du Q, et al. Hyperspectral image classification using band selection and morphological profile [C]//4th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Shanghai:IEEE, 2014.
[30] 张兵, 高连如 . 高光谱图像分类与目标探测[M]. 北京: 科学出版社, 2011.
[30] Zhang B, Gao L R. Hyperspectral Image Classification and Target Detection[M]. Beijing: Science Press, 2011.
[31] Wold S, Esbensen K, Geladi P . Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987,2(1-3):37-52.
doi: 10.1016/0169-7439(87)80084-9 url: http://linkinghub.elsevier.com/retrieve/pii/0169743987800849
[32] Li W, Du Q. Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery [C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Melbourne:IEEE, 2013.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[6] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[7] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[8] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[9] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[10] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[11] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[12] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[13] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[14] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[15] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech