Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 75-78     DOI: 10.6046/gtzyyg.2012.02.14
Technology Application |
Internal Structure and Assemblage Features of Tectonic Slices in Dong Cuo Melange Zone
WANG Chang-hai, LIU Deng-zhong, LIU Jin-long, HUANG Hui
College of Earth Sciences, Chengdu University of Technology, Chengdu 610000, China
Download: PDF(2096 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to make a thorough study of the Dong Cuo melange zone, the authors used remote sensing interpretation to divide the Dong Cuo melange zone into three secondary tectonic slices belts, and found that the three belts extend nearly in parallel in the plane, converge eastward and westward, and thrust southward one by one in profile. Field investigation shows that the interpretation results are in accordance with the practical situation, and the material composition and geometric structure of rocks in various slices are different. The ophiolite melange belt is the main belt in the Dong Cuo melange zone.
Keywords remote sensing      alternation anomaly      ASTER      Duobuza porphyry copper deposit     
: 

TP 79

 
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Zi-hao
TANG Ju-xing
ZHANG Ting-bin
WU Hua
XU Zhi-zhong
BIE Xiao-juan
Cite this article:   
HU Zi-hao,TANG Ju-xing,ZHANG Ting-bin, et al. Internal Structure and Assemblage Features of Tectonic Slices in Dong Cuo Melange Zone[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 75-78.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.14     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/75
[1] 高廷林,汤耀庆.西藏雅鲁藏布江中段构造混杂带特征及其构造意义[J].中国地质科学院院报,1984,8(1):1-18.
[2] 曾庆高,毛国政.1:25万改则幅报告[R].西藏:西藏地质调查院(06528),2002.
[3] 王国灿,张克信,梁斌,等.东昆仑造山带结构及构造岩片组合[J].地球科学-中国地质大学学报,1997,22(4):352-356.
[4] 陶晓风,刘登忠,朱利东,等.浅析构造混杂带的类型及组成特征——以滇西兔峨幅、弥沙井幅1:5万区调为例[J].中国区域地质,2001,20(2):137-140.
[5] 刘登忠,王国芝,陶晓风,等.澜沧江构造混杂带的初步研究[J].中国区域地质,2000,19(3):312-317.
[6] 吴新国,吕继东.雅鲁藏布江缝合带内构造岩片划分及形成——以仲巴—桑桑段为例[J].大地构造与成矿学,2005,30(3):320-325.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech