Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 130-137     DOI: 10.6046/gtzyyg.2020.01.18
|
Evolution trend and driving force analysis of the Chaerhan Salt Lake
Xianhua YANG1,2, Xiao XU3, Lixiao XIAO2,3, Li TIAN1,2, Lina HAO3, Peng XU2
1. Sichuan Key Laboratory of Evaluation and Utilization of Rare Earth Strategic Resources, Chengdu 610081, China
2. Sichuan Geological Survey Institute, Chengdu 610036, China
3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610051, China
Download: PDF(4968 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Chaerhan Salt Lake contains abundant inorganic salts such as sodium chloride, potassium chloride and magnesium chloride, and it is also one of the mining bases in China. In recent years, with the rapid development of industrial mining activities in the Chaerhan Salt Lake and its surrounding salty field, the water quality of the salt lake has been polluted, and the lake water area has also rapidly decreased. By calculating the normalized vegetation index (NDVI) for the study area in 2002—2018, the authors obtained vegetation changes in the study area. Using remote sensing monitoring methods and combined with various factors such as rainfall and industrial development, the authors studied evolutionary trends and driving factors of the Chaerhan Salt Lake. Some conclusions have been reached: ① The development of salty field mine is the main factor causing the degradation of the Chaerhan Salt Lake. With the increase of the mining area of salt fields, the area of natural salt lakes has been greatly reduced, the amount of water has been reduced, and the salinization of water bodies has become serious. ② The area of the Chaerhan Salt Lake is affected by precipitation. In the years of abundant rainfall, the area of the salt lake has been larger, and smaller changes occur in the area of salt lakes in less rainy years. ③ Mining of salt fields will affect the growth of vegetation. According to the field investigation, salt field mining leads to serious salinization of salt lake water, and vegetation can hardly grow in the high salinity area, so there is less vegetation around the salt lake.

Keywords Chaerhan Salt Lake      NDVI      rainfall      mining     
:  TP79  
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xianhua YANG
Xiao XU
Lixiao XIAO
Li TIAN
Lina HAO
Peng XU
Cite this article:   
Xianhua YANG,Xiao XU,Lixiao XIAO, et al. Evolution trend and driving force analysis of the Chaerhan Salt Lake[J]. Remote Sensing for Land & Resources, 2020, 32(1): 130-137.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.18     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/130
Fig.1  Remote sensing survey of damaged land in mine development in the research area in 2018
Fig.2  Extraction results of NDVI from 2002 to 2018
研究区地物分类 NDVI 遥感影像解译特征 野外实拍照片
自然水体 [-1,-0.4) 遥感影像上呈现暗蓝色调,在影像中表现为水的自然特征
盐田水体 [-1 ,-0.4) 矿山开采形成的盐田水体,影像上呈规律格状形态,在影像中表现为水的自然特征
裸露滩涂湿地 [-0.4 ,-0.02) 影像中呈棕灰色,具有一定水分,因含盐碱,仅有稀疏植被生长
戈壁或沙漠 [-0.02,0.1) 影像中呈黄棕色,颜色均一,地面几乎被粗沙、砾石所覆盖,植被稀少或几乎没有植被
植被稀疏区 [0.1,0.3) 影像上呈深灰色,有少量稀疏植被存在,多分布于河流冲积扇附近
植被较茂密区 [0.3,1] 影像上呈暗黑色,植被相比于稀疏区植被较为茂密,覆盖度大于30%,一般分布于河道两侧
Tab.1  Classification of natural environmental elements
Fig.3  Monitoring of mining activities and natural environmental elements in the research area from 2002 to 2018
年份 水体 裸地 植被覆盖区
自然水体 盐田水体 合计 裸露滩涂湿地 戈壁或沙漠 合计 植被稀疏区 植被茂密区 合计
2002年 422.63 165.17 587.80 413.37 18 215.72 18 629.09 787.51 24.96 812.47
2006年 463.96 265.57 729.53 264.43 18 323.65 18 588.08 648.23 63.52 711.75
2010年 691.92 410.08 1 102.00 734.82 17 467.67 18 202.49 659.98 64.89 724.87
2014年 482.07 491.43 973.50 102.93 17 700.65 17 803.58 1 226.07 26.21 1 252.28
2018年 299.99 703.95 1 003.94 113.65 17 688.10 17 801.75 1 210.45 13.22 1 223.67
Tab.2  Mining activities and natural environment elements area in the research area from 2002 to 2018(km2)
占地类型 特征 高分影像 Landsat影像
盐田水体 颜色多为深绿色,呈格状规律分布
固体废弃物 灰白色调,团块状,纹理较为杂乱
中转场 主要为选矿厂、堆矿场地,位于盐田旁
矿山建筑物 呈长方形、正方形等规则形态图斑或集合形态
Tab.3  Remote sensing interpretation marks for the types of land spot in mine exploitation
年份 盐田水体 其他矿山占地 开发占地
面积合计/
km2
面积/
km2
增长
率/%
面积/
km2
增长
率/%
2002年 165.17 134.03 299.20
2006年 265.57 60.79 176.25 31.50 441.82
2010年 410.08 54.42 210.14 19.23 620.22
2014年 561.43 36.90 300.54 43.02 861.97
2018年 703.95 25.39 415.06 38.10 1 119.01
Tab.4  Mining activity information extraction results from 2002 to 2018
Fig.4  Water area change in the study area from 2002 to 2018
Fig.5  Monitoring of salt lake change around potassium salt mines in the study area
Fig.6  Rainfall trend of Delingha City from 2002 to 2018
Fig.7  Remote sensing contrast of water surface change in Sugan Lake from 2006 to 2018
Fig.8  Remote sensing contrast of water surface change in Xiaochaidamu Lake from 2006 to 2018
Fig.9  Vegetation area change in the study area from 2002 to 2018
Fig.10  Area change of different land coverage types in the study area from 2002 to 2018
[1] 杨显华, 孙小飞, 黄洁 , 等. 青海木里煤矿区荒漠化的驱动因素及防治对策[J]. 中国地质灾害与防治学报, 2018,29(1):78-84.
[1] Yang X H, Sun X F, Huang J , et al. Analysis of driving factors and prevention measures for desertification in muli coal mining area in Qinghai Province[J]. The Chinese Journal of Geological Hazard and Control, 2018,29(1):78-84.
[2] 王宏森 . 矿山开发过程中循环经济研究[J]. 现代冶金, 2009,37(2):9-10.
[2] Wang H S . Research on circular economy in the process of mine development[J]. Modern Metallurgy, 2009,37(2):9-10.
[3] 赵玉灵 . 粤港澳大湾区自然资源遥感调查与保护建议[J]. 国土资源遥感, 2018,30(4):139-147.doi: 10.6046/gtzyyg.2017373.
[3] Zhao Y L . Remote sensing survey and proposal for protection of the natural resources in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Remote Sensing for Land and Resources, 2018,30(4):139-147.doi: 10.6046/gtzyyg.2017373.
[4] 陈丽新 . 国外矿山环境治理的思考[J]. 经济研究导刊, 2014(27):265-266.
[4] Chen L X . Reflections on comprehensive ecological improvement of mines abroad[J]. Economic Research Guide, 2014(27):265-266.
[5] 杨显华, 黄洁, 田立 , 等. 矿山遥感监测在采空区稳定性分析中的应用[J]. 国土资源遥感, 2018,30(3):143-150.doi: 10.6046/gtzyyg.2018.03.20.
[5] Yang X H, Huang J, Tian L , et al. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land and Resources, 2018,30(3):143-150.doi: 10.6046/gtzyyg.2018.03.20.
[6] 孟猛, 宗美娟 . 3S技术在矿山环境治理中的应用[J]. 中国矿业, 2011,20(9):59-61.
[6] Meng M, Zong M J . The application of 3S technology in the treatments of mine environment[J]. China Mining Magazine, 2011,20(9):59-61.
[7] 岳媛媛, 苏敬勤 . 生态效率:国外的实践与我国的对策[J]. 科学研究, 2004,22(2):170-173.
[7] Yue Y Y, Su J Q . Eco-efficiency:Foreign practice and our measure[J]. Studies in Science of Science, 2004,22(2):170-173.
[8] 赵振斌, 包浩生 . 国外城市自然保护与生态重建及其对我国的启示[J]. 自然资源学报, 2001,16(4):390-396.
[8] Zhao Z B, Bao H S . Overseas urban nature conservation,ecological rehabilitation and enlightenments to China[J]. Journal of Natural Resources, 2001,16(4):390-396.
[9] 顾祝军, 曾志远, 史学正 , 等. 基于遥感图像不同辐射校正水平的植被覆盖度估算模型[J]. 应用生态学报, 2008,19(6):1296-1302.
[9] Gu Z J, Zeng Z Y, Shi X Z , et al. Estimation models of vegetation fractional coverage (VFC) based on remote sensing image at different radiometric correction levels[J]. Chinese Journal of Applied Ecology, 2008,19(6):1296-1302.
[10] 黄敬峰, 王秀珍, 王人潮 , 等. 天然草地牧草产量与气象卫星植被指数的相关分析[J]. 农业现代化研究, 2000,21(1):33-36.
[10] Huang J F, Wang X Z, Wang R C , et al. Relation analysis beween the production of natural grassland and satallite vegetation indices[J]. Research of Agricultural Modernization, 2000,21(1):33-36.
[11] 栾海军, 章欣欣, 田庆久 , 等. Landsat-7 ETM+归一化差分植被指数影像真实性检验[J]. 遥感信息, 2016,31(6):138-146.
[11] Luan H J, Zhang X X, Tian Q J , et al. Validation of Landsat-7 ETM+NDVI imagery[J]. Remote Sensing Information, 2016,31(6):138-146.
[12] 杨金中, 秦绪文, 聂洪峰 , 等. 矿山遥感监测工作指南[M]. 北京: 中国大地出版社, 2009.
[12] Yang J Z, Qin X W, Nie H F , et al. Mine Remote Sensing Monitoring Work Guide[M]. Beijing: China Land Press, 2009.
[13] 中国地质调查局. DD2011—06矿产资源开发遥感监测技术要求[S]. 北京:中国地质调查局, 2011.
[13] China Geological Survey. DD2011—06 Technical Requirements for Remote Sensing Monitoring of Mineral Resources Development[S]. Beijing:China Geological Survey, 2011.
[14] 刘洪滨, 邵雪梅, 黄磊 , 等. 青海省海西州德令哈地区近千年来年降水量变化特征分析[J]. 第四纪研究, 2005,25(2):176-183.
[14] Liu H B, Shao X M, Huang L , et al. Statistical characteristics of annual precipitation variation during the past 1 000 years in Delingha,Qinghai Province,China[J]. Quaternary Sciences, 2005,25(2):176-183.
[15] 李永顺 . 近35年德令哈市降水量日数的特征分析[J]. 青海气象, 2017(2):41-44.
[15] Li Y S . Characteristic analysis of precipitation days in Delingha City in recent 35 years[J]. Qinghai Meteorology, 2017(2):41-44.
[16] 金爱兵, 孙金海, 吴顺川 . 露天矿深部开采边坡稳定性分析与治理方案研究[J]. 金属矿山, 2005(6):5-8.
[16] Jin A B, Sun J H, Wu S C . Analysis of slope stability in deep mining of an open-pit mine and its control scheme[J]. Metal Mine, 2005(6):5-8.
[17] 宫成, 丁杨, 侯世占 . 矿山生态环境的恢复治理[J]. 煤炭技术, 2008,27(10):3-5.
[17] Gong C, Ding Y, Hou S Z . Recovery and harnessing of the mine ecological environment[J]. Coal Technology, 2008,27(10):3-5.
[18] 关军洪, 郝培尧, 董丽 , 等. 矿山废弃地生态修复研究进展[J]. 生态科学, 2017,36(2):193-200.
[18] Guan J H, Hao P Y, Dong L , et al. Review on ecological restoration of mine wasteland[J]. Ecological Science, 2017,36(2):193-200.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[3] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[4] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[5] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[6] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[7] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[8] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[9] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[10] GAO Wenlong, SU Tengfei, ZHANG Shengwei, DU Yinlong, LUO Meng. Classification of objects and LUCC dynamic monitoring in mining area: A case study of Hailiutu watershed[J]. Remote Sensing for Land & Resources, 2020, 32(3): 232-239.
[11] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[12] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[13] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[14] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[15] Haiqing WANG, Jianting HAO, Li LI, Na AN, Wenjia XU, Yaqiu YIN. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(1): 115-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech