Please wait a minute...
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 89-95     DOI: 10.6046/gtzyyg.2019.02.13
A new method for detection “greening” or “browning” change trend in vegetation from NDVI sequences
Liang TANG1,2, Zhongming ZHAO2, Ping TANG2()
1.Hainan Tropical Ocean University, Sanya 572022, China
2.Institute of Remote Sensing and Digital Earth Applications, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(5019 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Normalized difference vegetation index (NDVI) trends can approximate the trend of “greening” or “browning” of vegetation and reflect the adaptation process of vegetation to global change. In this paper, an NDVI trend analysis method combining empirical mode decomposition (EMD) and Mann-Kendall (MK) significance test is proposed on vegetation monotone trend detection. The method includes mainly two steps: firstly, EMD is used to decompose NDVI time series into a finite number of intrinsic mode functions (IMF), and these components contain the local characteristic information of different time scales of the original signal. The first component is a high-frequency component, the subsequent component frequency gradually decreases, and the residual is a monotonic function, indicating the average trend. From the decomposition, the NDVI variation trend along with time is extracted naturally. Secondly, the MK significance test is used to detect the monotonicity of the trend varied, that is, to detect that the trend is monotonically increasing or monotonically decreasing, the monotonically increasing is corresponding to the trend of vegetation getting “greening”, and the monotonically decreasing is corresponding to the trend of vegetation getting “browning”. The test data are MODIS NDVI time series of 16 days from 2006 to 2015. The analysis of the trend detection of those NDVI time series shows that the method proposed in this paper is an effective method for time series trend analysis and has a wide application prospect.

Keywords EMD      MK significance test      NDVI      greening of vegetation      browning of vegetation     
:  TP701  
Corresponding Authors: Ping TANG     E-mail:
Issue Date: 23 May 2019
E-mail this article
E-mail Alert
Articles by authors
Liang TANG
Zhongming ZHAO
Cite this article:   
Liang TANG,Zhongming ZHAO,Ping TANG. A new method for detection “greening” or “browning” change trend in vegetation from NDVI sequences[J]. Remote Sensing for Land & Resources, 2019, 31(2): 89-95.
URL:     OR
Fig.1  Origin time-series, upper and lower NDVI envelope, mean of upper and lower envelope
Fig.2  Upper and lower NDVI envelope and its mean value after the first iteration
Fig.3  Upper and lower NDVI envelope and its mean value after the fourth iteration
Fig.4  Decomposition results by EMD method
Fig.5  Origin time-series, RES curve and imf6+RES curve
Fig.6  Satellite images, NDVI median images and NDVI trend images
[1] Foley J A, Levis S, Costa M H , et al. Incorporating dynamic vegetation cover within global climate models[J]. Ecological Applications, 2000,10(6):1620-1632.
doi: 10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2 url:[1620:IDVCWG]2.0.CO;2
[2] IPCC. 4th Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva:IPCC, 2007.
[3] Cai X L, Sharma B R . Integrating remote sensing,census and weather data for an assessment of rice yield,water consumption and water productivity in the Indo-Gangetic River Basin[J]. Agricultural Water Management, 2010,97(2):309-316.
doi: 10.1016/j.agwat.2009.09.021 url:
[4] Sims D A, Rahman A F, Cordova V D , et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS[J]. Remote Sensing of Environment, 2008,112(4):1633-1646.
doi: 10.1016/j.rse.2007.08.004 url:
[5] Yu D Y, Shi P J, Shao H B , et al. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model[J]. International Journal of Remote Sensing, 2009,30(18):4851-4866.
doi: 10.1080/01431160802680552 url:
[6] Metternicht G, Zinck J A, Blanco P D , et al. Remote sensing of land degradation:Experiences from Latin America and the Caribbean[J]. Journal of Environmental Quality, 2010,39(1):42-61.
doi: 10.2134/jeq2009.0127 url:
[7] Wessels K J, Prince S D, Malherbe J , et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa[J]. Journal of Arid Environments, 2007,68(2):271-297.
doi: 10.1016/j.jaridenv.2006.05.015 url:
[8] Zika M, Erb K H . The global loss of net primary production resulting from human-induced soil degradation in drylands[J]. Ecological Economics, 2009,69(2):310-318.
doi: 10.1016/j.ecolecon.2009.06.014 url:
[9] Prince S D, Tucker C J . Satellite remote sensing of rangelands in Botswana II.NOAA AVHRR and herbaceous vegetation[J]. International Journal of Remote Sensing, 1986,7(11):1555-1570.
doi: 10.1080/01431168608948953 url:
[10] Tucker C J, Vanpraet C L, Sharman M J , et al. Satellite remote sensing of total herbaceous biomass production in the senegalese sahel:1980—1984[J]. Remote Sensing of Environment, 1985,17(3):233-249.
doi: 10.1016/0034-4257(85)90097-5 url:
[11] Alcaraz-Segura D, Chuvieco E, Epstein H E , et al. Debating the greening vs.browning of the North American boreal forest:Differences between satellite datasets[J]. Global Change Biology, 2010,16(2):760-770.
doi: 10.1111/gcb.2010.16.issue-2 url:
[12] Bai Z G, Dent D L, Olsson L , et al. Proxy global assessment of land degradation[J]. Soil Use and Management, 2008,24(3):223-234.
doi: 10.1111/sum.2008.24.issue-3 url:
[13] Beurs K D M, Henebry G M . Trend analysis of the pathfinder AVHRR land (PAL) NDVI data for the deserts of central Asia[J]. IEEE Geoscience and Remote Sensing Letters, 2004,1(4):282-286.
doi: 10.1109/LGRS.2004.834805 url:
[14] Verbesselt J, Hyndman R, Zeileis A , et al. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J]. Remote Sensing Environment, 2010,114(12):2970-2980.
doi: 10.1016/j.rse.2010.08.003 url:
[15] Belle G V, Hughes J P . Non-parametric tests for trend in water quality[J]. Water Resources Research, 1984,20(1):127-136.
doi: 10.1029/WR020i001p00127 url:
[16] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [C]//Proceedings of the Royal Society of London, 1998,454:903-995.
[17] Yu D J, Cheng J S, Yang Y . Application of EMD method and Hilbert spectrum to the fault diagnoisis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005,19(2):259-270.
doi: 10.1016/S0888-3270(03)00099-2 url:
[18] 吴征镒 . 中国植被[M]. 北京: 科学出版社, 1980.
[18] Wu Z Y. Chinese Vegetation[M]. Beijing: Science Press, 1980.
[19] Mann H B . Non-parametric tests against trend[J]. Econometrica, 1945,13:245-259.
doi: 10.2307/1907187 url:
[20] Kendall M G . Rank Correlation Methods[M]. London:Charles Griffin Company, 1975: 20-22
[21] Douglas E M, Vogel R M, Kroll C N . Trends in floods and low flows in the United States:Impact of spatial correlation[J]. Journal of Hydrology, 2000,240(1-2):90-105.
doi: 10.1016/S0022-1694(00)00336-X url:
[22] Abdul-Aziz O I, Burn D H . Trends and variability in the hydrological regime of the Mackenzie River Basin[J]. Journal of Hydrolo-gy, 2006,319(1-4):282-294.
doi: 10.1016/j.jhydrol.2005.06.039 url:
[23] 王艳君, 姜彤, 许崇育 . 长江流域20 cm蒸发皿蒸发量的时空变化[J]. 水科学进展, 2006,17(6):830-833.
[23] Wang Y J, Jiang T, Xu C Y . Spatial-temporal change of 20 cm pan evaporation over the Yangtze River Basin[J]. Advances in Water Science, 2006,17(6):830-833.
[24] 丛振涛, 倪广恒, 杨大文 , 等. “蒸发悖论”在中国的规律分析[J]. 水科学进展, 2008,19(2):147-152.
[24] Cong Z T, Ni G H, Yang D W , et al. Evaporation paradox in China[J]. Advances in Water Science, 2008,19(2):147-152.
[25] Chen J, Jönsson P, Tamura M , et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2004,91(3-4):332-344.
doi: 10.1016/j.rse.2004.03.014 url:
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[4] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[5] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[6] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[7] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[8] Jiaxin XU, Shibo FANG, Tingbin ZHANG, Yongchao ZHU, Dong WU, Guihua YI. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land & Resources, 2020, 32(1): 237-246.
[9] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[10] Xianhua YANG, Xiao XU, Lixiao XIAO, Li TIAN, Lina HAO, Peng XU. Evolution trend and driving force analysis of the Chaerhan Salt Lake[J]. Remote Sensing for Land & Resources, 2020, 32(1): 130-137.
[11] Wei WANG, Samat Alim, Abuduwaili Jilili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 2019, 31(4): 32-40.
[12] Chao MA, Panli CAI. Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 199-208.
[13] Ying LIU, Hui YUE, Enke HOU. Drought monitoring based on MODIS in Shaanxi[J]. Remote Sensing for Land & Resources, 2019, 31(2): 172-179.
[14] Hongzhu HAN, Jianjun BAI, Bo ZHANG, Gao MA. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series[J]. Remote Sensing for Land & Resources, 2018, 30(4): 125-131.
[15] Jianhui XU, Yi ZHAO, Minghong XIAO, Kaiwen ZHONG, Huihua RUAN. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 186-194.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech