Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 43-54     DOI: 10.6046/zrzyyg.2020137
|
Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018
LI Mengmeng(), FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin
Provincial Geomatics Centre of Jiangsu, Nanjing 210013, China
Download: PDF(20145 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The time-series interferometric synthetic aperture Radar (InSAR) technology has been widely used since it allows for the safe and efficient obtainment of large-scale high-precision ground subsidence data. It is still a hot topic to efficiently obtain accurate land subsidence data of mining areas at different mining states using this technology to provide data support for the ecological governance of the mining areas. Based on Sentinel-1A images (58 scenes per complete orbit), this paper conducts time series monitoring of six mining areas in Xuzhou City using the multiple master-image coherent target small-baseline interferometric SAR (MCTSB-InSAR) technique and obtains land subsidence results during 2016—2018. Meanwhile, it verifies the accuracy of the obtained subsidence rate using the measured data in a similar period, yielding a difference in root mean square error of 4.0 mm/a. Therefore, the monitoring requirements can be satisfied. The monitoring results are as follows. The Zhangshuanglou and Sanhejian coal mines suffered serious land subsidence, with the maximum average annual subsidence rate exceeding 100 mm/a and the maximum cumulative subsidence exceeding 300 mm. In comparison, the Qishan, Shitun, Quantai, and Zhangji coal mines experienced light subsidence, which all occurred within the mining areas and did not show a notable expansion trend during the monitoring period. Based on these results and the monitoring data of the basic geographical state of Jiangsu Province in 2016, there were 2 844 and 672 high-coherence points falling in houses and roads, respectively for the Sanhejian and Zhangshuanglou coal mines, which accounted for 73.66% and 63.33% of the total high coherence points of the mines, respectively. For the mining areas except for the Quantai coal mine, there was a roughly linear relationship between the subsidence amount and time, which was stronger in the mines under mining than in the mines where mining had stopped. In contrast, the relationship between the subsidence amount in the Quantai coal mine and time presented a nonlinear law. The experiment results show that Sentinel-1A images and the MCTSB-InSAR technique have good application prospects in the monitoring and analysis of land subsidence in mining areas.

Keywords mining area      subsidence monitoring      time-series analysis      InSAR technique     
ZTFLH:  P237P258  
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mengmeng LI
Xueting FAN
Chao CHEN
Qiannan LI
Jin YANG
Cite this article:   
Mengmeng LI,Xueting FAN,Chao CHEN, et al. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020137     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/43
煤矿名称 投产时间 停采时间 生产能力/(万t·a-1)
权台煤矿 1959年12月 2015年12月 110
旗山煤矿 1959年 2016年1月 150
张集煤矿 1979年6月 2016年5月 85
拾屯煤矿 1992年1月 2016年12月 15
三河尖煤矿 1988年8月 2019年 120
张双楼煤矿 1986年 120
Tab.1  Basic information of mining area
Fig.1  Images, bench mark and mining map
Fig.2  Technique flow chart
Fig.3  Spatial and temporal distribution of small baseline pair
Fig.4  Statistics of subsidence rate difference between level point and InSAR point, and point for different difference ranges
Fig.5  Maximum subsidence rate and value of mining area
Fig.6-1  Spatial distribution of land subsidence rate and accumulated land subsidence in mining area
Fig.6-2  Spatial distribution of land subsidence rate and accumulated land subsidence in mining area
Fig.6-3  Spatial distribution of land subsidence rate and accumulated land subsidence in mining area
Fig.7  Statistic of high-coherence points in different subsidence rate ranges in the mining area
Fig.8  Land use classification and high-coherence distribution map of mining area
Fig.9-1  Time-series variation diagram of accumulated subsidence in mining area
Fig.9-2  Time-series variation diagram of accumulated subsidence in mining area
Fig.10  Statistical chart of accumulative subsidence in mining are
[1] Howladar M F. Environmental impacts of subsidence around the Barapukuria coal mining area in Bangladesh[J]. Energy,Ecology and Environment, 2016,1(6):370-385.
doi: 10.1007/s40974-016-0031-x url: http://link.springer.com/10.1007/s40974-016-0031-x
[2] Sahu P, Lokhande R D. An investigation of sinkhole subsidence and its preventive measures in underground coal mining[J]. Procedia Earth and Planetary Science, 2015,11:63-75.
doi: 10.1016/j.proeps.2015.06.009 url: https://linkinghub.elsevier.com/retrieve/pii/S1878522015000600
[3] Saeidi A, Deck O, Verdel T. Comparison of building damage assessment methods for risk analysis in mining subsidence regions[J]. Geotechnical and Geological Engineering, 2013,31(4):1073-1088.
doi: 10.1007/s10706-013-9633-7 url: http://link.springer.com/10.1007/s10706-013-9633-7
[4] 岳建平, 方露. 城市地面沉降监控理论与技术[M]. 北京: 科学出版社, 2012:1-5.
[4] Yue J P, Fang L. Theory and technology of urban land subsidence monitoring[M]. Beijing: Science Press, 2012:1-5.
[5] Liu X, Wang Y, Yan S. Interferometric SAR time series analysis for ground subsidence of the abandoned mining area in north Peixian using Sentinel-1A TOPS data[J]. Journal of the Indian Society of Remote Sensing, 2018,46(3):451-461.
doi: 10.1007/s12524-017-0708-4 url: http://link.springer.com/10.1007/s12524-017-0708-4
[6] 何敏, 陆晓燕, 何秀凤. 利用D-InSAR二轨法监测徐州大屯中心区地表形变[J]. 地理空间信息, 2011,9(5):3-5.
[6] He M, Lu X Y, He X F. Surface deformation in the central area of Xuzhou Datun was monitored by D-InSAR[J]. Geospatial Information, 2011,9(5):3-5.
[7] 郭炳跃, 何敏, 刘建东. 利用InSAR技术监测徐州市矿区地表变形[J]. 地质学刊, 2012,36(1):99-103.
[7] Guo B Y, He M, Liu J D. Surface deformation monitoring with InSAR technology in Xuzhou[J]. Journal of Geology, 2012,36(1):99-103.
[8] 武继峰, 杨志强. InSAR技术应用于矿区开采沉陷监测的数据优选研究[J]. 测绘通报, 2013(s1):92-94.
[8] Wu J F, Yang Z Q. The study of the data optimization of mining subsidence monitoring based on InSAR technique[J]. Bulletin of Surveying and Mapping, 2013(s1):92-94.
[9] Yang C, Zhang D, Zhao C, et al. Ground deformation revealed by Sentinel-1 MSBAS-InSAR time-series over Karamay oilfield,China[J]. Remote Sensing, 2019,11(17):2027.
doi: 10.3390/rs11172027 url: https://www.mdpi.com/2072-4292/11/17/2027
[10] Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014,140:94-106.
doi: 10.1016/j.rse.2013.08.038 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713002964
[11] 李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版), 2018,43(10):1531-1537.
[11] Li D, Deng K Z, Gao X X, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018,43(10):1531-1537.
[12] Chatterjee R S, Thapa S, Singh K B, et al. Detecting,mapping and monitoring of land subsidence in Jharia Coalfield,Jharkhand,India by spaceborne differential interferometric SAR,GPS and precision levelling techniques[J]. Journal of Earth System Science, 2015,124(6):1359-1376.
doi: 10.1007/s12040-015-0606-5 url: http://link.springer.com/10.1007/s12040-015-0606-5
[13] Grzovic M, Ghulam A. Evaluation of land subsidence from underground coal mining using time SAR (SBAS and PSI) in Springfield,Illinois,USA[J]. Natural Hazards, 2015,79(3):1739-1751.
doi: 10.1007/s11069-015-1927-z url: http://link.springer.com/10.1007/s11069-015-1927-z
[14] Bateson L, Cigna F, Boon D, et al. The application of the intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield,UK[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,34:249-257.
doi: 10.1016/j.jag.2014.08.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243414001822
[15] Gupta M, Mohanty K K, Kumar D, et al. Monitoring surface elevation changes in Jharia coalfield, India using synthetic aperture Radar interferometry[J]. Environmental Earth Sciences, 2014,71(6):2875-2883.
doi: 10.1007/s12665-013-2664-9 url: http://link.springer.com/10.1007/s12665-013-2664-9
[16] 陆燕燕, 何敏, 何秀凤. 基于DInSAR的徐州张双楼煤矿地表形变监测研究[J]. 测绘工程, 2013,22(6):61-64.
[16] Lu Y Y, He M, He X F. Ground subsidence monitoring of Zhangshuanglou coal mine in Xuzhou City based on DInSAR[J]. Engineering of Surveying and Mapping, 2013,22(6):61-64.
[17] Nannini M, Prats-Iraola P, Zan F D, et al. TOPS time series performance assessment with TerraSAR-X data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3832-3848.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[18] 吴文豪, 李陶, 龙四春, 等. 实时轨道条件下Sentinel-1卫星影像干涉配准[J]. 武汉大学学报(信息科学版), 2019,44(5):745-750.
[18] Wu W H, Li T, Long S C, et al. Coregistration of sentinel-1 TOPS data for interferometric processing using real-time orbit[J]. Geomatics and Information Science of Wuhan University, 2019,44(5):745-750.
[19] De Zan F, Prats-Iraola P, Scheiber R. Interferometry with TOPS:Coregistration and azimuth shifts[C]//Berlin:VDE Verlag GmbH, 2014:949-952.
[20] 康琪. TOPS模式数据InSAR形变监测配准方法[D]. 北京:中国测绘科学研究院, 2019.
[20] Kang Q. Registration method of TOPS data for InSAR deformation monitoring[D]. Beijing:Chinese Academy of Surveying and Mapping, 2019.
[21] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661 url: http://ieeexplore.ieee.org/document/898661/
[22] Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(10):2243-2253.
doi: 10.1109/TGRS.2003.814657 url: http://ieeexplore.ieee.org/document/1237386/
[23] 张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012,41(6):864-869.
[23] Zhang Y H, Wu H A, Sun G T. Deformation model of time series interferometric SAR techniques[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(6):864-869.
[24] 张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.
[24] Zhang Y H, Wu H A, Kang Y H. Ground Subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(9):1050-1058.
[25] 国家测绘地理信息局. CH/T 6006—2018时间序列InSAR地表形变监测数据处理规范[S]. 北京: 测绘出版社, 2018.
[25] National Bureau of Surveying,Mapping and Geographic Information. CH/T 6006—2018 specification of time series InSAR data processing for ground deformation monitoring[S]. Beijing: Surveying and Mapping Press, 2018.
[1] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[2] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[3] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[4] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[5] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[6] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[7] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[8] Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway[J]. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
[9] Ma Xiuqiang, Peng Ling, Xu Suning, Ding Zhilei. Application of GF-2 satellite data to mine geological environment investigation in Daye, Hubei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 127-131.
[10] LIU Ying, HOU Enke, YUE Hui. Dynamic monitoring and trend analysis of vegetation change in Shendong mining area based on MODIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 132-137.
[11] LI Man, GE Daqing, ZHANG Ling, LIU Bin, GUO Xiaofang, WANG Yan. Characteristics and influencing factors of land subsidence in Caofeidian Newly-developed Area based on PSInSAR technique[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 119-126.
[12] SUN Xiaopeng, LU Xiaoya, WEN Xuehu, ZHEN Yan, WANG Lei. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 123-129.
[13] CHEN Qi, ZHAO Zhifang, HE Binxian, WANG Di, XI Jing. Environmental recovery and management planning based on RS and GIS techniques: A case study of the Yuanyang gold mining area in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 167-171.
[14] LIU Zhimin, LI Yongsheng, ZHANG Jingfa, LUO Yi, LIU Bin. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 37-42.
[15] ZENG Faming, YANG Bo, WU Dewen, TANG Panke, ZHANG Jianguo, ZHANG Hongjian. Extraction of roads in mining area based on Canny edge detection operator[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech