Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 40-47     DOI: 10.6046/gtzyyg.2020215
|
Impervious surface extraction based on Sentinel-2A and Landsat8
ZHAO Yi1,2,3,4(), XU Jianhui1,2, ZHONG Kaiwen1(), WANG Yunpeng3,4, HU Hongda1,2, WU Pinghao1,2,3,4
1. Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Engineering Laboratory for Geographic Spatio-temporal Big Data, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
3. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
4. University of the Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(4729 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The extraction of impervious surface (IS) is very important for the development of cities, and linear spectral mixture analysis is commonly adopted to calculate the fraction of IS in the mixed pixel to improve the extraction of the urban IS at the subpixel scale. Owing to errors in the spectra of pure pixels selected from remote sensing images, incorrect fractions of different land cover types often emerge after unmixing. In this paper, the modified endmember selection was proposed to improve the accuracy of the spectral information of endmembers. Sentinel-2A images were applied to selected endmembers to get the spectral, which was used to modify the spectral information of the endmembers from Landsat8. In addition, the optimization scheme of LSMA results in which the normalized differential vegetation index (NDVI) and dry bare-soil index (DBSI) thresholds are used to optimize the mixing results was applied to improve the accuracy of LSMA results. With the WorldView-2 remote sensing image for sample verification, the results showed that the accuracy of IS fraction extracted by the method in this paper was 20% higher than that of the traditional method, providing reliable theoretical support for endmember selection and IS extraction.

Keywords Sentinel-2A      modified endmember selection      linear spectral mixture analysis      impervious surface      Sentinel-2A      modified endmember selection      linear spectral mixture analysis      impervious surface     
ZTFLH:  TP79X87  
Corresponding Authors: ZHONG Kaiwen     E-mail: zhaoyiww@gdas.ac.cn;zkw@gdas.ac.cn
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianhui XU
Kaiwen ZHONG
Yi ZHAO
Jianhui XU
Yunpeng WANG
Kaiwen ZHONG
Hongda HU
Yunpeng WANG
Pinghao WU
Hongda HU
Pinghao WU
Cite this article:   
Jianhui XU,Kaiwen ZHONG,Yi ZHAO, et al. Impervious surface extraction based on Sentinel-2A and Landsat8[J]. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020215     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/40
Fig.1  Study area image combined with Landsat8 B4(R),B3(G),B2(B)
Landsat8 OLI Sentinel-2A MSI
波段 空间分
辨率/m
波长/μm 波段 空间分
辨率/m
波长/μm
B1 30 0.433~0.453
B2 30 0.450~0.515 B2 10 0.458~0.523
B3 30 0.525~0.600 B3 10 0.543~0.578
B4 30 0.630~0.680 B4 10 0.650~0.680
B5 30 0.845~0.885 B8 10 0.785~0.900
B6 30 1.560~1.660 B11 20 0.855~0.875
B7 30 2.100~2.300 B12 20 2.100~2.280
Tab.1  Landsat8 OLI and Sentinel-2A MSI data
Landsat8 OLI Sentinel-2A MSI
波段 空间分
辨率/m
波长/μm 波段 空间分
辨率/m
波长/μm
B1 30 0.433~0.453
B2 30 0.450~0.515 B2 10 0.458~0.523
B3 30 0.525~0.600 B3 10 0.543~0.578
B4 30 0.630~0.680 B4 10 0.650~0.680
B5 30 0.845~0.885 B8 10 0.785~0.900
B6 30 1.560~1.660 B11 20 0.855~0.875
B7 30 2.100~2.300 B12 20 2.100~2.280
Tab.1  Landsat8 OLI and Sentinel-2A MSI data
Fig.2  Flow chart
Fig.2  Flow chart
Fig.3  Spectral curves of endmembers
Fig.3  Spectral curves of endmembers
Fig.4  Distribution of impervious surface fraction
Fig.4  Distribution of impervious surface fraction
Fig.5  Linear fitting scatter diagram
Fig.5  Linear fitting scatter diagram
研究方法 SE MAE RMSE R2
传统LSMA 0.195 0.240 0.298 0.735
结合端元优化方案的LSMA 0.190 0.217 0.265 0.851
结合端元优化和解混结果优化方案的LSMA -0.066 0.103 0.133 0.879
Tab.2  accuracy assessment of urban IS fraction extracted by different methods
研究方法 SE MAE RMSE R2
传统LSMA 0.195 0.240 0.298 0.735
结合端元优化方案的LSMA 0.190 0.217 0.265 0.851
结合端元优化和解混结果优化方案的LSMA -0.066 0.103 0.133 0.879
Tab.2  accuracy assessment of urban IS fraction extracted by different methods
Fig.6  Details for impervious surface
Fig.6  Details for impervious surface
[1] Elvidge C D, Tuttle B T, Sutton P C, et al. Global distribution and density of constructed impervious surfaces[J]. Sensors, 2007, 7:1962-1979.
doi: 10.3390/s7091962 url: http://www.mdpi.com/1424-8220/7/9/1962
[2] Zhu H, Li Y, Fu B. Estimating impervious surfaces by linear spectral mixture analysis under semi-constrained condition[C]// International Conference on Remote Sensing,Environment and Transportation Engineering (RSETE 2013). Paris: Atlantis Press, 2013:357-360.
[3] Zhang H S, Lin H, Zhang Y Z. Remote sensing of impervious surfaces in tropical and subtropical areas[M]. Boca Raton: CRC Press/Taylor & Francis Group, 2015.
[3] Zhang H S, Lin H, Zhang Y Z. Remote sensing of impervious surfaces in tropical and subtropical areas[M]. Boca Raton: CRC Press/Taylor & Francis Group, 2015.
[4] Fan F, Wei F, Weng Q. Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices[J]. Canadian Journal of Remote Sensing, 2015, 41(6):577-586.
doi: 10.1080/07038992.2015.1112730 url: http://www.tandfonline.com/doi/full/10.1080/07038992.2015.1112730
[4] Fan F, Wei F, Weng Q. Improving urban impervious surface mapping by linear spectral mixture analysis and using spectral indices[J]. Canadian Journal of Remote Sensing, 2015, 41(6):577-586.
doi: 10.1080/07038992.2015.1112730 url: http://www.tandfonline.com/doi/full/10.1080/07038992.2015.1112730
[5] Xu J, Zhao Y, Zhong K, et al. Measuring spatio-temporal dynamics of impervious surface in Guangzhou,China,from 1988 to 2015,using time-series Landsat imagery[J]. Science of the Total Environment, 2018, 627:264-81.
doi: 10.1016/j.scitotenv.2018.01.155 url: https://linkinghub.elsevier.com/retrieve/pii/S004896971830192X
[5] Xu J, Zhao Y, Zhong K, et al. Measuring spatio-temporal dynamics of impervious surface in Guangzhou,China,from 1988 to 2015,using time-series Landsat imagery[J]. Science of the Total Environment, 2018, 627:264-81.
doi: 10.1016/j.scitotenv.2018.01.155 url: https://linkinghub.elsevier.com/retrieve/pii/S004896971830192X
[6] Lu D, Li G, Kuang W, et al. Methods to extract impervious surface areas from satellite images[J]. International Journal of Digital Earth, 2014, 7:93-112.
doi: 10.1080/17538947.2013.866173 url: http://www.tandfonline.com/doi/abs/10.1080/17538947.2013.866173
[6] Lu D, Li G, Kuang W, et al. Methods to extract impervious surface areas from satellite images[J]. International Journal of Digital Earth, 2014, 7:93-112.
doi: 10.1080/17538947.2013.866173 url: http://www.tandfonline.com/doi/abs/10.1080/17538947.2013.866173
[7] 赵怡, 许剑辉, 钟凯文, 等. LSMA结合NDBI提取广州市部分城区不透水面的方法[J]. 地理空间信息, 2018, 16:90-93,10.
[7] 赵怡, 许剑辉, 钟凯文, 等. LSMA结合NDBI提取广州市部分城区不透水面的方法[J]. 地理空间信息, 2018, 16:90-93,10.
[7] Zhao Y, Xu J H, Zhong K W, et al. Extraction of urban impervious surface in Guangzhou by LSMA with NDBI[J]. Geospatial Information, 2018, 16:90-93,10.
[7] Zhao Y, Xu J H, Zhong K W, et al. Extraction of urban impervious surface in Guangzhou by LSMA with NDBI[J]. Geospatial Information, 2018, 16:90-93,10.
[8] Xu H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76:557-65.
[8] Xu H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76:557-65.
[9] Esch T, Himmler V, Schorcht G, et al. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data[J]. Remote Sensing of Environment, 2009, 113:1678-1690.
doi: 10.1016/j.rse.2009.03.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709000959
[9] Esch T, Himmler V, Schorcht G, et al. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data[J]. Remote Sensing of Environment, 2009, 113:1678-1690.
doi: 10.1016/j.rse.2009.03.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709000959
[10] Sattari F, Hashim M, Pour A B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data:A case study from the metropolitan Kuala Lumpur,Malaysia[J]. Measurement, 2018, 125:262-78.
doi: 10.1016/j.measurement.2018.04.092 url: https://linkinghub.elsevier.com/retrieve/pii/S0263224118303713
[10] Sattari F, Hashim M, Pour A B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data:A case study from the metropolitan Kuala Lumpur,Malaysia[J]. Measurement, 2018, 125:262-78.
doi: 10.1016/j.measurement.2018.04.092 url: https://linkinghub.elsevier.com/retrieve/pii/S0263224118303713
[11] Hu X, Weng Q. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method[J]. Geocarto International, 2011, 26:3-20.
doi: 10.1080/10106049.2010.535616 url: http://www.tandfonline.com/doi/abs/10.1080/10106049.2010.535616
[11] Hu X, Weng Q. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method[J]. Geocarto International, 2011, 26:3-20.
doi: 10.1080/10106049.2010.535616 url: http://www.tandfonline.com/doi/abs/10.1080/10106049.2010.535616
[12] 许剑辉, 赵怡, 肖明虹, 等. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
[12] 许剑辉, 赵怡, 肖明虹, 等. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
[12] Xu J H, Zhao Y, Xiao M H, et al. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote sensing for Land and Resources, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
[12] Xu J H, Zhao Y, Xiao M H, et al. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote sensing for Land and Resources, 2018, 30(2):186-194.doi: 10.6046/gtzyyg.2018.02.25.
doi: 10.6046/gtzyyg.2018.02.25
[13] Wang J, Wu Z F, Wu C S, et al. Improving impervious surface estimation:an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis[J]. GIScience & Remote Sensing, 2018, 55(4):583-603.
[13] Wang J, Wu Z F, Wu C S, et al. Improving impervious surface estimation:an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis[J]. GIScience & Remote Sensing, 2018, 55(4):583-603.
[14] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84:493-505.
doi: 10.1016/S0034-4257(02)00136-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702001360
[14] Wu C, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84:493-505.
doi: 10.1016/S0034-4257(02)00136-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702001360
[15] Chen S, Le W. Linear spatial spectral mixture model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54:3599-611.
[15] Chen S, Le W. Linear spatial spectral mixture model[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54:3599-611.
[16] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995, 16:2165-2185.
doi: 10.1080/01431169508954549 url: https://www.tandfonline.com/doi/full/10.1080/01431169508954549
[16] Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995, 16:2165-2185.
doi: 10.1080/01431169508954549 url: https://www.tandfonline.com/doi/full/10.1080/01431169508954549
[17] Weng Q, Lu D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10:68-83.
[17] Weng Q, Lu D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation & Geoinformation, 2008, 10:68-83.
[18] 孙艳丽. 联合丰度信息与空谱特征的高光谱影像分类研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[18] 孙艳丽. 联合丰度信息与空谱特征的高光谱影像分类研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[18] Sun Y L. Research on hypercpectral imagery classification by combing abundance information and spectral-spatial feature[J]. Beijing:Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences), 2017.
[18] Sun Y L. Research on hypercpectral imagery classification by combing abundance information and spectral-spatial feature[J]. Beijing:Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences), 2017.
[19] Li Y, Wang H, Li X B. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model[J]. PLoS One, 2015, 10(4):e0124608.
doi: 10.1371/journal.pone.0124608 url: https://dx.plos.org/10.1371/journal.pone.0124608
[19] Li Y, Wang H, Li X B. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model[J]. PLoS One, 2015, 10(4):e0124608.
doi: 10.1371/journal.pone.0124608 url: https://dx.plos.org/10.1371/journal.pone.0124608
[20] 陈子玄, 武文波. 基于线性混合模型的端元提取方法综述[J]. 测绘科学, 2008, 33:49-51.
[20] 陈子玄, 武文波. 基于线性混合模型的端元提取方法综述[J]. 测绘科学, 2008, 33:49-51.
[20] Chen Z X, Wu W B. A review on endmember extraction algorithms based on the linear mixing model[J]. Science of Surveying and Mapping, 2008, 33:49-51.
[20] Chen Z X, Wu W B. A review on endmember extraction algorithms based on the linear mixing model[J]. Science of Surveying and Mapping, 2008, 33:49-51.
[21] Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28:295-304.
[21] Lee J B, Woodyatt A S, Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28:295-304.
[22] Fan F. The application and evaluation of two methods based on LSMM model:A case study in Guangzhou[J]. Remote Sensing Technology and Application, 2008, 23:272-277.
[22] Fan F. The application and evaluation of two methods based on LSMM model:A case study in Guangzhou[J]. Remote Sensing Technology and Application, 2008, 23:272-277.
[23] 赵春晖, 郭蕴霆. 一种改进的快速N-FINDR端元提取算法[J]. 光子学报, 2015, 44:42-50.
[23] 赵春晖, 郭蕴霆. 一种改进的快速N-FINDR端元提取算法[J]. 光子学报, 2015, 44:42-50.
[23] Zhao C H, Guo Y T. An improved fast N-FINDR endmember extraction algorithm[J]. Acta Photonica Sinica, 2015, 44:42-50.
[23] Zhao C H, Guo Y T. An improved fast N-FINDR endmember extraction algorithm[J]. Acta Photonica Sinica, 2015, 44:42-50.
[24] Drusch M, Bello U D, Carlier S, et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120:25-36.
doi: 10.1016/j.rse.2011.11.026 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712000636
[24] Drusch M, Bello U D, Carlier S, et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120:25-36.
doi: 10.1016/j.rse.2011.11.026 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712000636
[25] Zhang H K, Roy D P, Yan L, et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere,surface,and nadir BRDF adjusted reflectance and NDVI differences[J]. Remote Sensing of Environment, 2018, 215:482-494.
doi: 10.1016/j.rse.2018.04.031 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718301883
[25] Zhang H K, Roy D P, Yan L, et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere,surface,and nadir BRDF adjusted reflectance and NDVI differences[J]. Remote Sensing of Environment, 2018, 215:482-494.
doi: 10.1016/j.rse.2018.04.031 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718301883
[26] Xu J, Zhao Y, Zhong K, et al. Coupling modified linear spectral mixture analysis and soil conservation service curve number (SCS-CN) models to simulate surface runoff:Application to the main urban area of Guangzhou,China[J]. Water, 2016, 8:550.
doi: 10.3390/w8120550 url: http://www.mdpi.com/2073-4441/8/12/550
[26] Xu J, Zhao Y, Zhong K, et al. Coupling modified linear spectral mixture analysis and soil conservation service curve number (SCS-CN) models to simulate surface runoff:Application to the main urban area of Guangzhou,China[J]. Water, 2016, 8:550.
doi: 10.3390/w8120550 url: http://www.mdpi.com/2073-4441/8/12/550
[27] 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20:1270-1289.
[27] 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20:1270-1289.
[27] Xu H Q, Wang M Y. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20:1270-1289.
[27] Xu H Q, Wang M Y. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20:1270-1289.
[28] Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004, 93:480-92.
doi: 10.1016/j.rse.2004.08.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704002421
[28] Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004, 93:480-92.
doi: 10.1016/j.rse.2004.08.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704002421
[29] Zhou C L, Xu H Q. A spectral mixture analysis and mapping of impervious surfaces in built-up land of Fuzhou City[J]. Journal of Image and Graphics, 2007, 12(5):875-881.
[29] Zhou C L, Xu H Q. A spectral mixture analysis and mapping of impervious surfaces in built-up land of Fuzhou City[J]. Journal of Image and Graphics, 2007, 12(5):875-881.
[30] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9:589-595.
[30] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9:589-595.
[31] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9:62-66.
[31] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9:62-66.
[32] Kumar B P, Babu K R, Ramachandra M, et al. Data on identification of desertified regions in Anantapur district,Southern India by NDVI approach using remote sensing and GIS[J]. Data in Brief, 2020, 30:105560.
doi: 10.1016/j.dib.2020.105560 url: https://linkinghub.elsevier.com/retrieve/pii/S2352340920304546
[32] Kumar B P, Babu K R, Ramachandra M, et al. Data on identification of desertified regions in Anantapur district,Southern India by NDVI approach using remote sensing and GIS[J]. Data in Brief, 2020, 30:105560.
doi: 10.1016/j.dib.2020.105560 url: https://linkinghub.elsevier.com/retrieve/pii/S2352340920304546
[1] SHI Shushu, DOU Yinyin, CHEN Yongqiang, KUANG Wenhui. Remote sensing monitoring based analysis of the spatio-temporal changing characteristics of regional urban expansion and urban land cover in China’s coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(4): 76-86.
[2] LI Yimin, YANG Shuting, WU Bowen, LIANG Yuxi, MENG Yueyue. Spatiotemporal evolution of impervious surface and the driving factors in Chenggong District,Kunming City[J]. Remote Sensing for Natural Resources, 2022, 34(2): 136-143.
[3] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[4] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[5] CAO Yong, TAO Yuxiang, DENG Lu, LUO Xiaobo. An impervious surface index construction for restraining bare land[J]. Remote Sensing for Land & Resources, 2020, 32(3): 71-79.
[6] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[7] Ru WANG, Yanfang ZHANG, Hongmin ZHANG, Yun LI. Study on the relationship between impervious surface coverage and artificial heat in new urban districts: A case study of Xixian New District, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 247-254.
[8] Zhili LIU, Qibin ZHANG, Depeng YUE, Yuguang HAO, Kai SU. Extraction of urban built-up areas based on Sentinel-2Aand NPP-VIIRS nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 227-234.
[9] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[10] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[11] Bin YANG, Dan LI, Guisheng GAO, Cai CHEN, Lei WANG. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land & Resources, 2018, 30(3): 128-135.
[12] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[13] Xiaoping ZHANG, Ying LYU, Huaguo ZHANG, Chaokui LI. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land & Resources, 2018, 30(2): 178-185.
[14] ZHU Honglei, LI Ying, LIU Zhaoli, FU Bolin. Estimation of impervious surface based on semi-constrained spectral mixture analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 48-53.
[15] YANG Keming, ZHOU Yujie, QI Jianwei, WANG Linwei, LIU Shiwen. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech