Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 198-204     DOI: 10.6046/zrzyyg.2021414
|
The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin
MA Junjun1,2(), WANG Chunlei3, HUANG Xiaohong1,2()
1. School of Artificial Intelligence, North China University of Technology, Tangshan 063210, China
2. Hebei Provincial Key Laboratory of Industrial Intelligent Perception, North China University of Technology, Tangshan 063210, China
3. Consulting & Research Center of Ministry of Natural Resources, Beijing 100100, China
Download: PDF(2769 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Given the land surface types and atmospheric features of the Heihe River basin, this study calculated the surface emissivity of the study area using the ASTER Global Emissivity Database and the vegetation cover method (VCM) and estimated the atmospheric water vapor content using the improved multilayer feed-forward neural network (MFNN). Moreover, by establishing the coefficient lookup table of input parameter groups, this study developed an ASTER data-based split-window algorithm for the remote sensing inversion of land surface temperature. To validate the applicability and accuracy of the split-window algorithm, this study elevated the algorithm using the measured site data on the land surface temperature of the Heihe River basin in 2019 and MODIS instruments. Compared with the site data, the results of the split-window algorithm had root mean square errors of 1.81~3.01 K. In the cross-validation using the MODIS instruments, the split-window algorithm had relatively small errors and deviations, with root mean square errors of 1.11~1.75 K. Overall, the accuracy of the land surface temperature obtained from the inversion using the split-window algorithm can meet the needs of meteorological and climatological studies. Moreover, the development philosophy of the split-window algorithm can be used as a reference for similar thermal infrared sensors.

Keywords ASTER data      land surface temperature      cross-validation     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junjun MA
Chunlei WANG
Xiaohong HUANG
Cite this article:   
Junjun MA,Chunlei WANG,Xiaohong HUANG. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin[J]. Remote Sensing for Natural Resources, 2023, 35(1): 198-204.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021414     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/198
站点名称 下垫面 经纬度/(°) 海拔/m
张掖湿地站 芦苇湿地 E100.4464, N38.9751 1 460
垭口站自动气象站 高寒草甸 E100.2421, N38.0142 4 148
混合林站 胡杨与柽柳 E101.1335,N41.9903 874
黑河遥感站 人工草地 E100.4756, N38.8270 1 560
景阳岭站 高寒草甸 E101.1160, N37.8384 3 750
花寨子荒漠站 盐爪爪山前荒漠 E100.3201, N38.7659 1 731
大沙龙 沼泽化高寒草甸 E98.9406, N38.8399 3 739
荒漠站 红砂荒漠 E100.9872, N42.1135 1 054
Tab.1  Weather station information table
Fig.1  Flow chart for obtaining the regression coefficients
隐藏层节点 输入层节点
7 8 9 10
15 0.47 0.460 0.430 0.450
18 0.41 0.370 0.380 0.369
20 0.44 0.375 0.373 0.377
Tab.2  Root mean square error between estimated value and actual WVC(g/cm2)
状态 ε [ 0.94,1.0 ] , T [ 290,310 ] K
水汽分组/(g·cm-2) W V C [ 0.0,1.5 ] W V C [ 1.0,2.5 ]
LST值的范围/K [290.0,307] [290.4,307.83]
均值/K 298.5 299.12
两组LST偏差/K 0.36
均值差值/K 0.62
Tab.3  Water vapor value sensitivity analysis table
站点 样本数 RMSE/K 均值偏差/K
地面
实测值
MODIS
获取值
地面
实测值
MODIS
获取值
张掖湿地站 116 3.01 1.11 -1.08 0.12
垭口站自动气象站 109 2.15 1.75 -0.36 0.55
混合林站 118 2.38 1.46 -0.26 1.92
黑河遥感站 118 2.54 1.11 0.98 -0.33
景阳岭站 108 2.80 1.48 -1.42 0.08
花寨子荒漠站 139 1.81 1.18 -0.29 -0.35
大沙龙 121 2.48 1.21 -0.87 -0.13
荒漠站 104 2.42 1.68 -1.31 0.64
Tab.4  Comparisons of the estimation value with site data and MODIS product
Fig.2  Scatter diagram of the estimation value and site data
[1] 李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016, 20(5):899-920.
[1] Li Z L, Duan S B, Tang B H, et al. Research progress in inversion methods of thermal infrared land surface temperature remote sensing[J]. Journal of Remote Sensing, 2016, 20(5):899-920.
[2] Anderson M C, Kustas W P, Norman J M, et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery[J]. Hydrology and Earth System Sciences, 2011, 15(1):223-239.
doi: 10.5194/hess-15-223-2011 url: https://hess.copernicus.org/articles/15/223/2011/
[3] 程博, 刘少峰, 杨巍然. Terra卫星ASTER数据的特点与应用[J]. 华东地质学院学报, 2003(1):15-17.
[3] Cheng B, Liu S F, Yang W R. The characteristics and application of Terra satellite ASTER data[J]. Journal of East China Institute of Geology, 2003(1):15-17.
[4] Gillespie A, Rokugawa S. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1113-1126.
doi: 10.1109/36.700995 url: http://ieeexplore.ieee.org/document/700995/
[5] 杨杭, 张立福, 张学文, 等. TASI数据的温度与发射率分离算法[J]. 遥感学报, 2011, 15(6):1248-1264.
[5] Yang H, Zhang L F, Zhang X W, et al. The separation algorithm of temperature and emissivity for TASI data[J]. Journal of Remote Sensing, 2011, 15(6):1248-1264.
[6] 张允祥, 李新, 韦玮, 等. 基于多通道温度与发射率分离算法的敦煌场地红外特性研究[J]. 光学学报, 2019, 39(10):309-317.
[6] Zhang Y X, Li X, Wei W, et al. Research on infrared characteristics of Dunhuang site based on multi-channel temperature and emissivity separation algorithm[J]. Acta Optics, 2019, 39(10):309-317.
[7] McMillin L M. Estimation of sea surface temperatures from two infrared window measurements with different absorption[J]. Journal of Geophysical Research, 1975, 80(36):5113-5117.
doi: 10.1029/JC080i036p05113 url: http://doi.wiley.com/10.1029/JC080i036p05113
[8] Price J C. Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR[J]. Journal of Geophysical Research Atmospheres, 1984, 89(5):7231-7237.
doi: 10.1029/JD089iD05p07231 url: http://doi.wiley.com/10.1029/JD089iD05p07231
[9] 毛克彪, 唐华俊, 陈仲新, 等. 一个从ASTER数据中反演地表温度的分裂窗算法[J]. 遥感信息, 2006(5):7-11.
[9] Mao K B, Tang H J, Chen Z X, et al. A split-window algorithm for retrieving land surface temperature from ASTER data[J]. Remote Sensing Information, 2006(5):7-11.
[10] 孙静, 赵萍, 叶琦. 一种ASTER数据地表温度反演的分裂窗算法[J]. 遥感技术与应用, 2012(5):728-734.
[10] Sun J, Zhao P, Ye Q. A split window algorithm for retrieving surface remperature from ASTER data[J]. Remote Sensing Technology and Application, 2012(5):728-734.
[11] Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience & Remote Sensing, 1996, 34(4):892-905.
[12] Liu S M, Li X, Xu Z W, et al. The Heihe integrated observatory network:A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal, 2018, 17(1) :1-21.
[13] Ri C G, 柳钦火, 历华, 等. 针对Terra/MODIS数据的改进分裂窗地表温度反演算法[J]. 遥感学报, 2013(4):830-840.
[13] Ri C G, Liu Q H, Li H, et al. Improved split-window land surface temperature retrieval algorithm for Terra/MODIS data[J]. Journal of Remote Sensing, 2013(4):830-840.
[14] Galve J M, Coll C, Caselles V, et al. An atmospheric radiosounding database for generating land surface temperature algorithms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(5):1547-1557.
[15] 李珊珊, 蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2):284-295.
[15] Li S S, Jiang G M. Research on land surface temperature inversion based on general split window algorithm and Landsat-8 data[J]. Remote Sensing Technology and Application, 2018, 33(2):284-295.
[16] Jiang J X, Li H, Liu Q H, et al. Evaluation of land surface temperature retrieval from FY-3B/VIRR data in an arid area of northwestern China[J]. Remote Sensing, 2015, 7(6):7080-7104.
doi: 10.3390/rs70607080 url: http://www.mdpi.com/2072-4292/7/6/7080
[17] 孟翔晨, 历华, 杜永明, 等. 基于ASTER GED产品的地表发射率估算[J]. 遥感学报, 2016, 20(3):382-396.
[17] Meng X C, Li H, Du Y M, et al. Estimation of surface emissivity based on ASTER GED products[J]. Journal of Remote Sensing, 2016, 20(3):382-396.
[18] Valor E, Caselles V. Mapping land surface emissivity from NDVI:Application to European,African,and South American areas[J]. Remote Sensing of Environment, 1996, 57(3):167-184.
doi: 10.1016/0034-4257(96)00039-9 url: https://linkinghub.elsevier.com/retrieve/pii/0034425796000399
[19] Sobrino J A, Jimenez-Muoz J C, Soria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(2):316-327.
[20] 杨亮彦, 孔金玲, 王雅婷, 等. 旱区大气水汽含量遥感反演算法研究[J]. 测绘科学, 2020, 45(5):95-100.
[20] Yang L Y, Kong J L, Wang Y T, et al. Research on remote sensing inversion algorithm of atmospheric water vapor content in arid area[J]. Science of Surveying and Mapping, 2020, 45(5):95-100.
[21] 李红林, 李万彪. MODIS近红外资料反演大气水汽总含量[J]. 北京大学学报(自然科学版), 2008(1):121-128.
[21] Li H L, Li W B. Retrieving total atmospheric water vapor content from MODIS near-infrared data[J]. Journal of Peking University (Natural Science Edition), 2008(1):121-128.
[22] Li Z L, Li J, Su Z G, et al. A new approach for retrieving precipitable water from ATSR2 split-window channel data over land area[J]. International Journal of Remote Sensing, 2003, 24(24):5095-5117.
doi: 10.1080/0143116031000096014 url: https://www.tandfonline.com/doi/full/10.1080/0143116031000096014
[23] Zhang S, Xu L, Ding J, et al. A neural network based algorithm for the retrieval of precipitable water vapor from MODIS data[J]. Lecture Notes in Electrical Engineering, 2010, 67:909-916.
[24] 马晋, 周纪, 刘绍民, 等. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6):615-629.
doi: 10.11867/j.issn.1001-8166.2017.06.0615
[24] Ma J, Zhou J, Liu S M, et al. Research progress on authenticity verification of satellite remote sensing of land surface temperature[J]. Advances in Earth Science, 2017, 32(6):615-629.
[25] Duan S B, Li Z L, Cheng J, et al. Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces-ScienceDirect[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126(4):1-10.
doi: 10.1016/j.isprsjprs.2017.02.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616301976
[26] Liu Y, Hiyama T, Yamaguchi Y. Scaling of land surface temperature using satellite data:A case examination on ASTER and MODIS products over a heterogeneous terrain area[J]. Remote Sensing of Environment, 2006, 105(2):115-128.
doi: 10.1016/j.rse.2006.06.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706002379
[1] CAI Zhenfeng, JI Peng, ZHUFU Xuezhi, LIU Yufang. A method for constructing a reference dataset for the validation of remote sensing products[J]. Remote Sensing for Natural Resources, 2023, 35(2): 176-181.
[2] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[3] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[4] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[5] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[6] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[7] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[8] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[9] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[10] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[11] Jianyu LIU, Ling CHEN, Wei LI, Genhou WANG, Bo WANG. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 229-236.
[12] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[13] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[14] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[15] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech