Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 222-230     DOI: 10.6046/zrzyyg.2021446
|
Spatial-temporal dynamics of ecological carrying capacity of the northeastern margin of the Ulan Buh Desert
QI Zhao1,2(), TAN Bingxiang1,2(), CAO Xiaoming3, YU Hang1,2, SHEN Mingtan1,2
1. Research Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
2. Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Beijing 100091, China
3. Research Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
Download: PDF(4582 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Ecological carrying capacity is an important indicator used to measure the stability of an ecosystem. The spatial-temporal change analysis of the ecological carrying capacity can help understand the changing trend of a regional ecological environment and serve as a comprehensive reference for the evaluation of ecological management and restoration, research on the overall sustainable development of an environment, and the optimization of land resources. Targeting the arid and semi-arid regions at the northeastern margin of the Ulan Buh Desert, this study constructed a comprehensive index evaluation system of ecological carrying capacity based on the actual ecological conditions of the regions and Landsat remote sensing images as the data source. Then, this study determined the spatial-temporal distribution and evolution pattern of regional ecological carrying capacity and made a driver analysis of the change in the ecological carrying capacity from the angles of rainfall, temperature, and land use changes. The results show that the ecological carrying capacity of the northeastern margin of the Ulan Buh Desert showed a first decreasing and then increasing trend from 1990 to 2020. The irrigated areas north of the Yellow River continued to expand to the desertification areas in the southwest. As a result, the percentage of the area with relatively high ecological carrying capacity increased greatly, while the area with high ecological carrying capacity decreased. The change in the ecological carrying capacity of the irrigated areas was mainly affected by land development and utilization, followed by temperature and rainfall. In contrast, the ecological carrying capacity of the desertification areas south of the Yellow River was mainly at a moderate level, which was shifted to a low level in large areas before 2010 and was restored to a moderate level in 2020. The change in the ecological carrying capacity of the desertification areas was greatly affected by temperature, followed by rainfall and changes in shrub and grass vegetation cover.

Keywords arid and semi-arid region      ecological carrying capacity      comprehensive evaluation index      driver analysis     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao QI
Bingxiang TAN
Xiaoming CAO
Hang YU
Mingtan SHEN
Cite this article:   
Zhao QI,Bingxiang TAN,Xiaoming CAO, et al. Spatial-temporal dynamics of ecological carrying capacity of the northeastern margin of the Ulan Buh Desert[J]. Remote Sensing for Natural Resources, 2023, 35(1): 222-230.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021446     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/222
Fig.1  Image in 2020 and geographical location distribution of the study area
数据类型 单位 数据来源
净初级生产力 g·C/m2 1990年的数据来自于“国家地球系统科学数据中心”提供的全球5 km 8 d总、净初级生产力产品; 2000年、2010年和2020年的数据来自于MOD17A3数据,空间分辨率为500 m,时间分辨率为1 a
潜在蒸散发 0.1 mm 1990年、2000年和2010年的数据来自于“国家地球系统科学数据中心”提供的中国1 km逐月潜在蒸散发数据集; 2020年的数据来自于MOD16A2数据,空间分辨率为500 m,时间分辨率为8 d
温度 0.1 ℃ 1990年、2000年、2010年和2020年的数据均来自于“国家地球系统科学数据中心”提供的中国1 km 逐月平均气温数据集
降雨 0.1 mm 1990年、2000年、2010年和2020年的数据均来自于“国家地球系统科学数据中心”提供的中国1 km 逐月降水量数据集
土地利用数据 1990年、2000年、2010年和2020年的土地利用数据均基于Landsat遥感影像数据采用监督分类的方法获取
Tab.1  Source and information for each data type
等级编号 等级名称 生态承载力取值范围
1 低生态承载力 [0,0.2)
2 较低生态承载力 [0.2,0.4)
3 中生态承载力 [0.4,0.6)
4 较高生态承载力 [0.6,0.8)
5 高生态承载力 [0.8,1.0]
Tab.2  Equivalent classification criteria of ecological carrying capacity
Fig.2  Analysis framework of driving factors of long-term ecological carrying capacity
Fig.3  Spatial distribution of ecological carrying capacity in four periods in the study area
Fig.4  Percentage of regions with different levels of ecological carrying capacity in four periods
Fig.5  Change trend of ecological carrying capacity in the study area
变化趋
势类型
显著
下降
不显著
下降
稳定
不变
不显著
上升
显著
上升
面积占比 7.09 0.02 81.89 0.19 10.81
Tab.3  Area proportion of the study area with different change trends(%)
Fig.6  Spatial distribution of driving factors of ecological carrying capacity
驱动因
素组合
无显著
变化区
降雨 温度 其他 降雨
和温
降雨
和其
温度
和其
降雨、
温度和
其他
面积
占比
81.89 7.61 4.61 2.77 0.31 0.99 1.07 0.75
Tab.4  Area statistics of various driving factors(%)
[1] 曲修齐, 刘淼, 李春林, 等. 生态承载力评估方法研究进展[J]. 气象与环境学报, 2019, 35(4):113-119.
[1] Qu X Q, Liu M, Li C L, et al. Research progress in ecological carrying capacity assessment methods[J]. Journal of Meteorology and Environment, 2019, 35(4):113-119.
[2] Du W P, Yan H M, Yang Y Z, et al. Evaluation methods and research trends for ecological carrying capacity[J]. Journal of Resources and Ecology, 2018, 9(2):115-124.
doi: 10.5814/j.issn.1674-764x.2018.02.001
[3] He Y F, Xie H L. Exploring the spatiotemporal changes of ecological carrying capacity for regional sustainable development based on GIS:A case study of Nanchang City[J]. Technological Forecasting and Social Change, 2019, 148(c):119720.
[4] Frank J W, Ottfried D, Gunnar L, et al. Evaluation of spatio-temporal patterns of remotely sensed evapotranspiration to infer information about hydrological behaviour in a data-scarce region[J]. Water, 2017, 9(5):333-358.
doi: 10.3390/w9050333 url: http://www.mdpi.com/2073-4441/9/5/333
[5] Tang X G, Ma M G, Ding Z, et al. Remotely monitoring ecosystem water use efficiency of grassland and cropland in China’s arid and semi-arid regions with MODIS data[J]. Remote Sensing, 2017, 9(6):616-633.
doi: 10.3390/rs9060616 url: http://www.mdpi.com/2072-4292/9/6/616
[6] 曹智, 闵庆文, 刘某承, 等. 基于生态系统服务的生态承载力:概念、内涵与评估模型及应用[J]. 自然资源学报, 2015, 30(1):1-11.
[6] Cao Z, Min Q W, Liu M C, et al. Ecological carrying capacity based on ecosystem services:Concept,connotation,evaluation model and application[J]. Journal of Natural Resources, 2015, 30(1):1-11.
[7] 王民哲. 内蒙古河套灌区盐碱化耕地改良措施及建议[J]. 中国水利, 2019, 15:40-41.
[7] Wang M Z. Measures and suggestions for improving salinized cultivated land in Hetao Irrigation District of Inner Mongolia[J]. China Water Resources, 2019, 15:40-41.
[8] 闫晋阳, 马向阳, 王晨霞. 河套灌区国管水利工程保护与管理问题分析及对策建议[J]. 中国水利, 2021, 15:58-59.
[8] Yan J Y, Ma X Y, Wang C X. Problems of protection and management of state-managed water conservancy projects in Hetao Irrigation District and countermeasures[J]. China Water Resources, 2021, 15:58-59.
[9] 杨超. 磴口县荒漠化治理产业业态及地区承载力研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
[9] Yang C. Research on desertification control industry forms and regional carrying capacity in Dengkou County[D]. Hehot: Inner Mongolia Agricultural University, 2020.
[10] 张景波, 郝玉光, 刘明虎, 等. 干旱农牧区内蒙古磴口县生态足迹及生态承载力动态变化[J]. 中国农学通报, 2011, 27(32):168-174.
[10] Zhang J B, Hao Y G, Liu M H, et al. Dynamic changes of ecological footprint and ecological carrying capacity in Dengkou County,Inner Mongolia[J]. Chinese Agricultural Science Bulletin, 2011, 27(32):168-174.
[11] 刘明虎, 张景波, 张瑞, 等. 磴口县2007年水资源生态承载力分析[J]. 中国农学通报, 2011, 27(17):255-259.
[11] Liu M H, Zhang J B, Zhang R, et al. Ecological carrying capacity of water resources in Dengkou County in 2007[J]. Chinese Agricultural Science Bulletin, 2011, 27(17):255-259.
[12] Yang H F, Mu S J, Li J L. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang,China[J]. Catena, 2014, 115:85-95.
doi: 10.1016/j.catena.2013.11.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816213002981
[13] 张启斌. 乌兰布和沙漠东北缘生态网络构建与优化研究[D]. 北京: 北京林业大学, 2019.
[13] Zhang Q B. Construction and optimization of ecological network in the northeastern edge of Ulan Buh Desert[D]. Beijing: Beijing Forestry University, 2019.
[14] 边凯, 高君亮, 辛智鸣, 等. 乌兰布和沙漠东北缘绿洲防护林体系防风阻沙能力研究[J]. 首都师范大学学报, 2021, 42(1):48-53.
[14] Bian K, Gao J L, Xin Z M, et al. Research on wind and sand resistance ability of oasis shelterbelt system in the northeastern edge of Ulan Buh Desert[J]. Journal of Capital Normal University, 2021, 42(1):48-53.
[15] 罗凤敏, 高君亮, 辛智鸣, 等. 乌兰布和沙漠东北缘防护林内外沙尘暴低空结构特征[J]. 干旱区研究, 2019, 36(4):1032-1040.
[15] Luo F M, Gao J L, Xin Z M, et al. Low-altitude structure characteristics of sandstorms inside and outside the shelterbelt in the northeastern edge of Ulan Buh Desert[J]. Arid Zone Research, 2019, 36(4):1032-1040.
[16] 黄雅茹, 马迎宾, 郝玉光, 等. 乌兰布和沙漠东北缘白刺群落与油蒿群落土壤养分特征分析[J]. 山东农业大学学报, 2019, 50(4):559-565.
[16] Huang Y R, Ma Y B, Hao Y G, et al. Analysis of soil nutrient characteristics of Nitraria community and Artemisia ordosica community in the northeastern edge of Ulan Buh Desert[J]. Journal of Shandong Agricultural University, 2019, 50(4):559-565.
[17] Zhen Z J, Chen S B, Yin T G, et al. Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas[J]. Sensors (Basel,Switzerland), 2021, 21(6):2115.
doi: 10.3390/s21062115 url: https://www.mdpi.com/1424-8220/21/6/2115
[18] Wu Z H, Lei S G, Bian Z F, et al. Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region[J]. Environmental Earth Sciences, 2019, 78(6):232.
doi: 10.1007/s12665-019-8111-9
[19] Liu Q S, Liu G H, Huan C. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series[J]. Journal of Arid Land, 2018, 10(1):12-26.
doi: 10.1007/s40333-017-0109-0
[20] 赖声裕智. 四川省城市人力资源产业的综合评价研究——基于主成分分析和聚类分析[J]. 武汉职业技术学院学报, 2017, 16(5):65-70.
[20] Lai S Y Z. Study on the comprehensive evaluation of urban human resources industry in Sichuan Province:Based on principal component analysis and cluster analysis[J]. Journal of Wuhan Polytechnic, 2017, 16(5):65-70.
[21] 俞立平, 宋夏云, 王作功. 评价型指标标准化与评价方法对学术评价影响研究——以TOPSIS评价方法为例[J]. 情报理论与实践, 2020, 43(2):15-20.
[21] Yu L P, Song X Y, Wang Z G. Research on the impact of evaluation index standardization and evaluation methods on academic evaluation:Taking TOPSIS evaluation method as an example[J]. Information Theory and Practice, 2020, 43(2):15-20.
[22] 俞立平. 指标标准化方法对科技评价的影响机制研究——以学术期刊评价为例[J]. 情报理论与实践, 2020, 43(12):54-62.
[22] Yu L P. Study on the impact mechanism of index standardization method on science and technology evaluation:Taking the evaluation of academic journals as an example[J]. Information Theory and Practice, 2020, 43(12):54-62.
[23] 李佩武, 李贵才, 张金花, 等. 城市生态安全的多种评价模型及应用[J]. 地理研究, 2009, 28(2):293-302.
[23] Li P W, Li G C, Zhang J H, et al. Several assessment models and application analysis of urban ecological security[J]. Geographical Research, 2009, 28(2):293-302.
doi: 10.11821/yj2009020003
[24] Tang W, Chen A Z, Li D M, et al. The application of combination weighting approach in multiple attribute decision making[J]. International Conference on Machine Learning and Cybernetics, 2009, 5:2724-2728.
[25] Karayalcin I I. The analytic hierarchy process:Planning,priority setting,resource allocation[J]. North-Holland, 1982, 9(1):97-98.
[26] 楚存坤, 孙思琴, 韩丰谈. 基于层次分析法的高校图书馆学科服务评价模式[J]. 大学图书馆学报, 2014, 32(6):86-90.
[26] Chu C K, Sun S Q, Han F T. The subject service evaluation model of academic libraries based on the analytic hierarchy process[J]. Journal of Academic Libraries, 2014, 32(6):86-90.
[27] 林秀春, 刘睿. 莆田市近海海域生态环境承载力评价[J]. 莆田学院学报, 2019, 26(2):94-99.
[27] Lin X C, Liu R. Evaluation of the carrying capacity of the ecological environment in the coastal waters of Putian City[J]. Journal of Putian University, 2019, 26(2):94-99.
[28] Wu X L, Hu F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method[J]. Ecological Indicators, 2020, 113:106243.
doi: 10.1016/j.ecolind.2020.106243 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X20301801
[29] Wang Z F, He X Q, Zhang C, et al. Evaluation of geological and eco-logical bearing capacity and spatial pattern along Du-wen road based on the analytic hierarchy process (AHP) and the technique for order of preference by similarity to an ideal solution (TOPSIS) method[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):237.
doi: 10.3390/ijgi9040237 url: https://www.mdpi.com/2220-9964/9/4/237
[30] 张鹏. 基于主成分分析的综合评价研究[D]. 南京: 南京理工大学, 2004.
[30] Zhang P. Research on comprehensive evaluation based on principal component analysis[D]. Nanjing: Nanjing University of Science and Technology, 2004.
[31] 李奇, 胡世雄, 王争磊. 基于主成分分析的山西省各城市经济综合实力评价[J]. 对外经贸, 2021(4):80-83.
[31] Li Q, Hu S X, Wang Z L. Evaluation of comprehensive economic strength of cities in Shanxi Province based on principal component analysis[J]. Foreign Economics and Trade, 2021(4):80-83.
[32] 杨宇. 多指标综合评价中赋权方法评析[J]. 统计与决策, 2006(13):17-19.
[32] Yang Y. Review and analysis of weighting methods in multi-index comprehensive evaluation[J]. Statistics and Decision, 2006(13):17-19.
[33] Wu X L, Hu F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method[J]. Ecological Indicators, 2020, 113:106243.
doi: 10.1016/j.ecolind.2020.106243 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X20301801
[34] 陈水蓉. 趋势分析在水质管理中的应用研究[D]. 天津: 天津师范大学, 2012.
[34] Chen S R. Research on the application of trend analysis in water quality management[D]. Tianjin: Tianjin Normal University, 2012.
[35] 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019, 38(7):1820-1832.
doi: 10.11821/dlyj020190088
[35] Sun Y J, Liu X F, Ren Z Y, et al. Multi-scale drought characteristics and influencing factors of the Loess Plateau from 1960 to 2016[J]. Geographical Research, 2019, 38(7):1820-1832.
[36] 汪攀, 刘毅敏. Sen’s斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6):454-457,472.
[36] Wang P, Liu Y M. Sen’s slope estimation and Mann-Kendall method in equipment operation trend analysis application[J]. Journal of Wuhan University of Science and Technology, 2014, 37(6):454-457,472.
[37] Heike H, Hilary B. Trends in extreme precipitation events in the indus river basin and flooding in Pakistan[J]. Atmosphere-Ocean, 2014, 52(1):77-91.
doi: 10.1080/07055900.2013.859124 url: http://www.tandfonline.com/doi/abs/10.1080/07055900.2013.859124
[38] 汪攀. 时间序列趋势分析及其在预防性维修中的应用[D]. 武汉: 武汉科技大学, 2015.
[38] Wang P. Time series trend analysis and its application in preventive maintenance[D]. Wuhan: Wuhan University of Science and Technology, 2015.
[39] Tali P A, Bhat M M, Lone F A. Seasonal spatio-temporal variability in temperature over North Kashmir Himalayas using Sen Slope and Mann-Kendall test[J]. Journal of Climatology and Weather Forecasting, 2021, 9(5):288-298.
[40] 邱临静, 郑粉莉, 尹润生. 1952—2008年延河流域降水与径流的变化趋势分析[J]. 水土保持学报, 2011, 25(3):49-53.
[40] Qiu L J, Zheng F L, Yin R S. Analysis of the change trend of precipitation and runoff in the Yanhe River Basin from 1952 to 2008[J]. Journal of Soil and Water Conservation, 2011, 25(3):49-53.
[41] 介科伟. 基于Pearson相关性分析的高校学生恋爱模型[J]. 首都师范大学学报, 2017, 38(6):8-13.
[41] Jie K W. College student love model based on pearson correlation analysis[J]. Journal of Capital Normal University, 2017, 38(6):8-13.
[42] 樊敏伟, 宋崎, 王冰. 采用数字序列相关性分析法研究灯盏花素的不同含量测定方法[J]. 中国实验方剂学杂志, 2008(8):10-12.
[42] Fan M W, Song Q, Wang B. Determination of breviscapine by digital sequence correlation analysis[J]. Chinese Journal of Experimental Formulae, 2008(8):10-12.
[1] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[6] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[11] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[12] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[13] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[14] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[15] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech