Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 243-250     DOI: 10.6046/zrzyyg.2022022
|
A method for the quality inspection and update of cadastral data based on spatio-temporal knowledge graphs
CHEN Luanjie1,2(), LI Weichao1, PENG Ling1,2(), CHEN Jiahui1,2, GAO Xiang3
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3. Tianxin Pavilion Big Data Institute, Changsha 410000, China
Download: PDF(2716 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Accurate and efficient quality inspection and database updates of cadastral data are essential for natural resource management. The current cadastral data management faces problems such as the low efficiency of quality inspection and updates, difficulty in meeting the demand for dynamic supervision, and small application scopes of relevant methods. To solve these problems, this study proposed a method framework based on spatio-temporal knowledge graphs. Moreover, with cadastral data and remote sensing images as data sources, this study constructed a spatio-temporal knowledge graph targeting the quality inspection and update workflow of cadastral data by designing conceptual and data layers and inference rules. Finally, experiments on the method proposed in this study were conducted using seven parcels of land in Changsha. As a result, the common errors in the process of quality inspection and updates were solved, and the method proposed in this study was proven to be more efficient than common methods.

Keywords spatio-temporal knowledge graph      cadastral data      cadastral database     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Luanjie CHEN
Weichao LI
Ling PENG
Jiahui CHEN
Xiang GAO
Cite this article:   
Luanjie CHEN,Weichao LI,Ling PENG, et al. A method for the quality inspection and update of cadastral data based on spatio-temporal knowledge graphs[J]. Remote Sensing for Natural Resources, 2023, 35(1): 243-250.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022022     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/243
Fig.1  Business logic of cadastral data quality inspection and update
错误类型 具体表现 质检方法
属性错误 地籍数据中缺少相关必要属性,或者属性格式不正确 属性质检
拓扑错误 在同一时间同一区域内,地籍数据中的宗地位置与其他宗地位置存在拓扑冲突 拓扑质检
地籍数据虚报 地籍数据中标注了存在某一地物,但该地物并不真实存在 真实性检验
地籍数据坐标边界错误 一块宗地中的地物所在位置超出了地籍数据中所标注的该宗地的坐标范围,即地籍数据中所标注的宗地位置与该宗地的真实位置不一致 真实性检验
Tab.1  Types of cadastral data errors and quality inspection methods
Fig.2  Flow chart of the quality inspection and updating of cadastral data
Fig.3  Spatio-temporal knowledge graphs architecture for the quality inspection and updating of cadastral data
Fig.4  Logic structure diagram of SWRLTO time ontology
Fig.5  Logical structure diagram of GeoSPARQL spatial ontology
Fig.6  Rule concept logic structure diagram
Fig.7  Storage structure of cadastral data source
Fig.8  Process diagram of knowledge extraction for cadastral data
Fig.9  Process diagram of knowledge extraction for remote sensing images
Fig.10  Description of geographical coordinates of triple record
Fig.11  Flow chart of quality inspection reasoning calculation of cadastral data
方法 精度分析 用时/min
ArcGIS 查询并加载待质检区域数据环节可能出现数据遗漏,导致应检未检问题; 目视检查属性字段环节受质检员经验和临场操作规范影响,易导致质量问题未检出 60
时空知
识图谱
基于待质检区域边界坐标实现空间叠置分析自动提取区域内所有待质检图斑,不会出现应检数据遗漏问题; 基于预定义质检规则,通过推理方法全自动完成质检判断,排除了人为因素干扰 8.52
Tab.2  Efficient analysis of spatio-temporal knowledge graph
宗地名称 属性格式是否正确 与哪块宗
地存在拓
扑交集
是否存在
虚报建筑
是否存在
坐标边界
错误
宗地A 正确
宗地B 不正确,缺少“房屋所有人”属性
宗地C 不正确,“房屋名称”属性格式错误
宗地D 正确 宗地E
宗地E 正确 宗地D
宗地F 正确
宗地G 正确
Tab.3  Description of experimental parcel attributes and topology
Fig.12  Spatial relationship between parcel D and parcel E
Fig.13  Operation results of unqualified quality inspection of parcel E topology
Fig.14  Operation results of parcel G unqualified in authenticity inspection
[1] Coscieme L, Niccolucci V, Giannetti B F, et al. Implications of land-grabbing on the ecological balance of Brazil[J]. Resources, 2018, 7(3): 44.
doi: 10.3390/resources7030044 url: http://www.mdpi.com/2079-9276/7/3/44
[2] Cienciała A, Sobolewska-Mikulska K, Sobura S. Credibility of the cadastral data on land use and the methodology for their verification and update[J]. Land Use Policy, 2021, 102(3):105204.
doi: 10.1016/j.landusepol.2020.105204 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837720325424
[3] Oregi X, Hermoso N, Prieto I, et al. Automatised and georeferenced energy assessment of an Antwerp district based on cadastral data[J]. Energy and Buildings, 2018, 173(16):176-194.
doi: 10.1016/j.enbuild.2018.05.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0378778817340318
[4] Silva M A, Stubkjær E. A review of methodologies used in research on cadastral development[J]. Computers,Environment and Urban Systems, 2002, 26(5):403-423.
doi: 10.1016/S0198-9715(02)00011-X url: https://linkinghub.elsevier.com/retrieve/pii/S019897150200011X
[5] Williamson I. Using the case study methodology for cadastral reform[J]. Geomatica, 1998, 52(3):283-295.
[6] Christensen D, Garfias F. The politics of property taxation:Fiscal infrastructure and electoral incentives in Brazil[J]. The Journal of Politics, 2021, 83(4):1399-1416.
doi: 10.1086/711902 url: https://www.journals.uchicago.edu/doi/10.1086/711902
[7] 韩文立, 张莉, 程鹏飞. 地理信息质检数据库建设和应用的技术探讨[J]. 测绘通报, 2015, 61(3): 94-96.
[7] Han W L, Zhang L, Cheng P F. Investigations of construction and application technology for geographic information quality inspection database[J]. Bulletin of Surveying and Mapping, 2021, 61(3):94-96.
[8] 王金栋, 韩文立, 章立博, 等. 基于已有资料的自动质检技术研究与实现[J]. 测绘通报, 2017, 63(2):109-111.
[8] Wang J D, Han W L, Zhang L B, et al. Research and implementation of automatic quality control technology based on existing material data[J]. Bulletin of Surveying and Mapping, 2017, 63(2):109-111.
[9] Joy J, Kanga S, Singh S K, et al. Cadastral level soil and water conservation priority zonation using geospatial technology[J]. International Journal of Agriculture System, 2021, 9(1):10-26.
[10] 邱冬炜, 杨松林. 地籍信息系统数据库的构建[J]. 地球信息科学, 2004, 9(3): 43-45,50.
[10] Qiu D W, Yang S L. The establishment of database for cadastral information system based on GIS[J]. Journal of Geo-Information Science, 2004, 9(3):43-45,50.
[11] 李志刚, 艾廷华. 时态GIS在地籍变更管理信息系统中的应用研究[J]. 测绘通报, 2003, 49(6): 58-60.
[11] Li Z G, Ai T H. Application research on temporal GIS in the cadastral alteration management system[J]. Bulletin of Surveying and Mapping, 2003, 49(6):58-60.
[12] 张丰, 刘南, 刘仁义, 等. 面向对象的地籍时空过程表达与数据更新模型研究[J]. 测绘学报, 2010, 39(3): 303-309.
[12] Zhang F, Liu N, Liu R Y, et al. Research of cadastral data modelling and database updating based on spatio-temporal process[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(3):303-309.
[13] Chen X, Jia S, Xiang Y. A review:Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141(5):112948.
doi: 10.1016/j.eswa.2019.112948 url: https://linkinghub.elsevier.com/retrieve/pii/S0957417419306669
[14] Chen J H, Ge X T, Li W C, et al. Construction of spatiotemporal knowledge graph for emergency decision making[C]// IEEE International Geoscience and Remote Sensing Symposium, 2021:3920-3923.
[15] Angles R, Gutierrez C. Survey of graph database models[J]. ACM Computing Surveys (CSUR), 2008, 40(1):1-39.
[16] McGuinness D L, Van Harmelen F. OWL web ontology language overview[J]. W3C recommendation, 2004, 10(10):2004.
[17] Battle R, Kolas D. Geosparql:Enabling a geospatial semantic web[J]. Semantic Web Journal, 2011, 3(4):355-370.
[18] Roda F, Musulin E. An ontology-based framework to support intelligent data analysis of sensor measurements[J]. Expert Systems with Applications, 2014, 41(17):7914-7926.
doi: 10.1016/j.eswa.2014.06.033 url: https://linkinghub.elsevier.com/retrieve/pii/S0957417414003741
[19] Chen D Y, Peng L, Li W C, et al. Building extraction and number statistics in WUI areas based on UNet structure and ensemble learning[J]. Remote Sensing, 2021, 13(6):1172.
doi: 10.3390/rs13061172 url: https://www.mdpi.com/2072-4292/13/6/1172
[20] Musen M A. The protégé project:A look back and a look forward[J]. AI Matters, 2015, 1(4):4-12.
doi: 10.1145/2757001.2757003 pmid: 27239556
[21] 胡刘鹏, 高飞, 胡小华. 基于ARCGIS的城镇地形地籍数据库建设方法研究[J]. 测绘, 2011, 34(4): 152-154,158.
[21] Hu L P, Gao F, Hu X H. Study of urban terrain and cadastral database building based on ARCGIS[J]. Surveying and Mapping, 2011, 34(4):152-154,158.
[1] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[6] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[11] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[12] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[13] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[14] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[15] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech