Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 226-235     DOI: 10.6046/zrzyyg.2022284
|
Impact of soil salinization on the eco-environment quality of coastal wetlands:A case study of Yellow River Delta
ZHANG Zhimei1(), FAN Yanguo1(), JIAO Zhijun2, GUAN Qingchun1
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
2. School of Geosciences and Info-physics, Central South University, Changsha 410012, China
Download: PDF(5239 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Soil salinization is an important reason for land degradation and desertification and has a huge impact on the eco-environment. Coastal wetlands are typical areas subjected to a weak eco-environment and severe salinization, and there is an urgent need to investigate the impact of soil salinization on their eco-environment. This study proposed the baseline-based soil salinity index (BSSI), which can effectively suppress the influence of complex features on surface salinization monitoring and improve the accuracy of saline soil extraction by 10% compared to other salinity index models. Furthermore, this study proposed the optimized water benefit-based ecological index (OWBEI) by optimizing the water benefit-based ecological index (WBEI), which can effectively increase the accuracy of eco-environment quality assessment to 87%. Finally, this study explored the mechanical processes of the influence of soil salinization on the eco-environment quality based on the distribution of soil salinization and eco-environment quality obtained from the Yellow River Delta. The results show that the deterioration of soil salinization has led to an increase in the soil vulnerability of coastal wetlands, indirectly resulting in a continuous decrease in eco-environment quality. Although eco-environment protection measures have been continuously proposed, few of them are tailored to the solving of salinization. This leads to the deterioration of the ecological quality, which then yields negative feedback to the soil and eventually forms a vicious circle. This adversely affects local production, life, and social development.

Keywords coastal wetlands      soil salinization      eco-environment quality      virtual salinization baseline      vegetation index     
ZTFLH:  P237  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhimei ZHANG
Yanguo FAN
Zhijun JIAO
Qingchun GUAN
Cite this article:   
Zhimei ZHANG,Yanguo FAN,Zhijun JIAO, et al. Impact of soil salinization on the eco-environment quality of coastal wetlands:A case study of Yellow River Delta[J]. Remote Sensing for Natural Resources, 2023, 35(4): 226-235.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022284     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/226
Fig.1  Location of the study area
影像获取时间 传感器 分辨率/m
2006-05-03 TM 30
2012-05-03 TM 30
2017-04-23 OLI 30
2020-05-01 OLI 30
Tab.1  Landsat datasets
Fig.2  The mechanism analysis system of soil salinization on coastal wetland ecology
等级 SSC%
非盐渍土 [0.0, 0.3]
轻度盐渍土 (0.3, 0.5]
中度盐渍土 (0.5, 1.0]
重度盐渍土 (1.0, 2.0]
盐土 (2.0, +∞)
Tab.2  Saline soil classification
Fig.3  Schematic diagram of index structure
方法 公式
SI[1] S I = ( B × R )
SI1[2] S I 1 = ( G × R )
SI2[2] S I 2 = ( G 2 + R 2 + N I R 2 )
VSSI[3] V S S I = 2 G - 5 R + N I R
Tab.3  Classification method
方法 OA/% Eo/% Ec/% Kappa
SI 67.88 58.06 12.90 0.376 2
SI1 67.15 51.61 20.97 0.354 2
SI2 70.07 64.52 1.61 0.427 2
VSSI 81.02 41.94 0.00 0.630 4
BSSI 91.24 17.74 1.61 0.825 7
Tab.4  Classification accuracy of saline soil
Fig.4  False color images of the surface
Fig.5  Soil salinization grade maps
等级 年份
2006 2012 2017 2020
非盐
渍化
面积/km2 2 921.67 2 965.70 3 060.77 2 976.00
占比/% 58.15 59.10 60.94 59.20
轻度
盐渍化
面积/km2 298.39 203.46 111.27 97.99
占比/% 5.94 4.05 2.22 1.95
中度
盐渍化
面积/km2 709.58 442.31 288.55 210.44
占比/% 14.12 8.81 5.74 4.19
重度
盐渍化
面积/km2 753.27 789.58 707.17 428.03
占比/% 14.99 15.73 14.08 8.51
盐土 面积/km2 341.85 617.44 854.98 1 314.54
占比/% 6.80 12.30 17.02 26.15
Tab.5  Area and proportion of soil salinization in the Yellow River Delta
Fig.6  True color images of the surface of the Yellow River Estuary
研究区 方法 2006年 2012年 2017年 2020年
河口区 EI 较差
(0.20~
0.35)
较差
(0.20~
0.35)
较差
(0.20~
0.35)
较差
(0.20~
0.35)
OWBEI 较差
(0.31)
较差
(0.33)
较差
(0.34)
较差
(0.28)
垦利区 EI 一般
(0.35~
0.55)
一般
(0.35~
0.55)
一般
(0.35~
0.55)
一般
(0.35~
0.55)
OWBEI 一般
(0.37)
一般
(0.48)
一般
(0.46)
较差
(0.25)
Tab.6  Comparison results of EI and OWBEI from 2006 to 2020
Fig.7  Soil salinization grade maps
Fig.8  The result of OWBEI
Fig.9  Average values of various ecological indicators at the Yellow River estuary
[1] Scudiero E, Skaggs T H, Corwin D L. Regional-scale soil salinity assessment using Landsat ETM+canopy reflectance[J]. Remote Sensing of Environment, 2015, 169:335-343.
doi: 10.1016/j.rse.2015.08.026 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715301127
[2] Zhou X H, Zhang F, Liu C J, et al. Soil salinity inversion based on novel spectral index[J]. Environmental Earth Sciences, 2021, 80(16):501-514.
doi: 10.1007/s12665-021-09752-x
[3] Ivushkin K, Bartholomeus H, Bregt A K, et al. Global mapping of soil salinity change[J]. Remote Sensing of Environment, 2019, 231:111260.
doi: 10.1016/j.rse.2019.111260 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719302792
[4] Zhuang Q W, Shao Z F, Huang X, et al. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains,Xinjiang,China[J]. CATENA, 2021, 206:105561.
doi: 10.1016/j.catena.2021.105561 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816221004197
[5] Wang Z, Zhang F, Zhang X L, et al. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index[J]. Science of The Total Environment, 2021, 775:145807.
doi: 10.1016/j.scitotenv.2021.145807 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969721008743
[6] Wang X P, Zhang F, Ding J L, et al. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR),Northwest China,based on a Bootstrap-BP neural network model and optimal spectral indices[J]. Science of The Total Environment, 2018, 615(15):918-930.
doi: 10.1016/j.scitotenv.2017.10.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969717327122
[7] Jin P B, Li P H, Wang Q, et al. Developing and applying novel spectral feature parameters for classifying soil salt types in arid land[J]. Ecological Indicators, 2015, 54:116-123.
doi: 10.1016/j.ecolind.2015.02.028 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X15001053
[8] Fan X W, Liu Y B, Tao J M, et al. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression[J]. Remote Sensing, 2015, 7(1):488-511.
doi: 10.3390/rs70100488 url: http://www.mdpi.com/2072-4292/7/1/488
[9] Douaoui A, Nicolas H, Walter C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data[J]. Geoderma, 2006, 134(1/2):217-230.
doi: 10.1016/j.geoderma.2005.10.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0016706105002958
[10] Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77(1/2/3):96-109.
doi: 10.1016/j.agwat.2004.09.038 url: https://linkinghub.elsevier.com/retrieve/pii/S0378377405000910
[11] Khan N M, Rastoskuev V V, Shalina E V, et al. Mapping salt-affected soils using remote sensing indicators:A simple approach with the use of GIS IDRISI[C]// 22nd Asian Conference on Remote Sensing.Singapore, 2001:5-9.
[12] Major D J, Baret F, Guyot G. A ratio vegetation index adjusted for soil brightness[J]. International Journal of Remote Sensing, 1990, 11(5):727-740.
doi: 10.1080/01431169008955053 url: https://www.tandfonline.com/doi/full/10.1080/01431169008955053
[13] Fourati H T, Bouaziz M, Benzina M, et al. Modeling of soil salinity within a semi-arid region using spectral analysis[J]. Arabian Journal of Geosciences, 2015, 8(12):11175-11182.
doi: 10.1007/s12517-015-2004-3 url: http://link.springer.com/10.1007/s12517-015-2004-3
[14] Nguyen K A, Liou Y A, Tran H P, et al. Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from Landsat8 OLI data:A case study in the Tra Vinh Province,Mekong Delta,Vietnam[J]. Progress in Earth and Planetary Science, 2022, 9(1):46.
doi: 10.1186/s40645-022-00505-3
[15] Elhag M. Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems,Saudi Arabia[J]. Journal of Sensors, 2016:7596175.
[16] Jaafari A, Mafi-Gholami D, Pham B T, et al. Wildfire probability mapping:Bivariate vs.multivariate statistics[J]. Remote Sensing, 2019, 11(6):618.
doi: 10.3390/rs11060618 url: https://www.mdpi.com/2072-4292/11/6/618
[17] Singh S, Raju N J, Ramakrishna C. Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi Region,Uttar Pradesh,India[J]. Journal of Water Resource and Protection, 2015, 7(7):572-587.
doi: 10.4236/jwarp.2015.77046 url: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jwarp.2015.77046
[18] Hu C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
doi: 10.1016/j.rse.2009.05.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709001710
[19] Jiao Z J, Sun G Y, Zhang A Z, et al. Water benefit-based ecological index for urban ecological environment quality assessments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:7557-7569.
doi: 10.1109/JSTARS.2021.3098667 url: https://ieeexplore.ieee.org/document/9492814/
[20] Liou Y, Le M S, Chien H. Normalized difference latent heat index for remote sensing of land surface energy fluxes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3):1423-1433.
doi: 10.1109/TGRS.2018.2866555 url: https://ieeexplore.ieee.org/document/8464042/
[21] Shan W, Jin X B, Ren J, et al. Ecological environment quality assessment based on remote sensing data for land consolidation[J]. Journal of Cleaner Production, 2019, 239:118126.
doi: 10.1016/j.jclepro.2019.118126 url: https://linkinghub.elsevier.com/retrieve/pii/S0959652619329968
[22] Tan J B, Li A N, Lei G B, et al. A novel and direct ecological risk assessment index for environmental degradation based on response curve approach and remotely sensed data[J]. Ecological Indicators, 2019, 98:783-793.
doi: 10.1016/j.ecolind.2018.11.038 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X18309014
[23] Piedallu C, Chéret V, Denux J P, et al. Soil and climate differently impact NDVI patterns according to the season and the stand type[J]. Science of the Total Environment, 2019, 651:2874-2885.
doi: 10.1016/j.scitotenv.2018.10.052
[24] Stefanov W L, Netzband M. Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center[J]. Remote Sensing of Environment, 2005, 99(1/2):31-43.
doi: 10.1016/j.rse.2005.04.024 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425705001756
[25] Chen X L, Xu Y, Yang J X, et al. Remote sensing of urban thermal environments within local climate zones:A case study of two high-density subtropical chinese cities[J]. Urban Climate, 2020, 31:100568.
doi: 10.1016/j.uclim.2019.100568 url: https://linkinghub.elsevier.com/retrieve/pii/S2212095519302639
[26] Ivits E, Cherlet M, Mehl W, et al. Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets[J]. Ecological Indicators, 2009, 9(3):422-431.
doi: 10.1016/j.ecolind.2008.05.013 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X08000721
[27] Li A H, Bo Y C, Chen L. Bayesian maximum entropy data fusion of field observed LAI and Landsat ETM+ derived LAI[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Vancouver, 2011:2617-2620.
[28] Wang S D, Zhang X Y, Wu T X, et al. The evolution of landscape ecological security in Beijing under the influence of different policies in recent decades[J]. Science of the Total Environment, 2019, 646:49-57.
doi: 10.1016/j.scitotenv.2018.07.146 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969718326317
[29] Wu J J, Wang X, Zhong B, et al. Ecological environment assessment for Greater Mekong Subregion based on Pressure-State-Response framework by remote sensing[J]. Ecological Indicators, 2020, 117:106521.
doi: 10.1016/j.ecolind.2020.106521 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X20304581
[30] Zhou D Y, Chen T, Niu R Q, et al. Ecological environment assessment of mining area by using moving window-based remote sensing ecological index[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Yokohama, 2019:9942-9945.
[31] Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI)[J]. Ecological Indicators, 2018, 93:730-740.
doi: 10.1016/j.ecolind.2018.05.055 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X18303960
[32] Firozjaei M K, Fathololoumi S, Weng Q, et al. Remotely sensed urban surface ecological index (RSUSEI):An analytical framework for assessing the surface ecological status in urban environments[J]. Remote Sensing, 2020, 12(12):2029.
doi: 10.3390/rs12122029 url: https://www.mdpi.com/2072-4292/12/12/2029
[33] Bless A E, Colin F, Crabit A, et al. Landscape evolution and agricultural land salinization in coastal area:A conceptual model[J]. Science of the Total Environment, 2018, 625:647-656.
doi: 10.1016/j.scitotenv.2017.12.083 url: https://linkinghub.elsevier.com/retrieve/pii/S004896971733509X
[34] Kingwell R, John M. The influence of farm landscape shape on the impact and management of dryland salinity[J]. Agricultural Water Management, 2007, 89(1/2): 29-38.
doi: 10.1016/j.agwat.2006.12.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0378377406003519
[35] 杨欢. 黄河三角洲湿地演变特征及生态系统健康评价研究[D], 郑州,华北水利水电大学, 2019.
[35] Yang H. Characteristics and ecosystem health evaluation research of the Yellow River Delta wetland[J]. Zhengzhou:North China University of water Resources and Electric Power, 2019.
[36] 陈利顶, 傅伯杰. 黄河三角洲地区人类活动对景观结构的影响分析──以山东省东营市为例[J], 生态学报, 1996, 16(4):337-344.
[36] Chen L D, Fu B J. Analysis of impact of human activity on landscape structare in Yellow River Delta:A case study of Dongying region[J]. Acta Ecologica Sinica, 1996, 16(4):337-344.
[37] Barsi J A, Schott J R, Palluconi F D, et al. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Toulouse, 2003(5):3014-3016.
[38] Julia A B, John R S, Frank D P, et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[C]// Proceedings of Spie the International Society for Optical Engineering.San Diego, 2005,58820.
[39] Jiang H N, Shu H. Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis,Xinjiang,China[J]. Earth Science Informatics, 2019, 12(1):43-56.
doi: 10.1007/s12145-018-0358-2
[40] Yang X, Peng L H, Chen Y, et al. Air humidity characteristics of local climate zones:A three-year observational study in Nanjing[J]. Building and Environment, 2020, 171:106661.
doi: 10.1016/j.buildenv.2020.106661 url: https://linkinghub.elsevier.com/retrieve/pii/S0360132320300196
[41] Liu C X, Wu X L, Wang L. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area,China[J]. Applied Geography, 2019, 105:1-14.
doi: 10.1016/j.apgeog.2019.02.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0143622818306933
[42] Sun G Y, Jiao Z J, Zhang A Z, et al. Hyperspectral image-based vegetation index (HSVI):A new vegetation index for urban ecological research[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102529.
doi: 10.1016/j.jag.2021.102529 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243421002361
[43] Chen L, Li M, Huang F, et al. Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ Image[C]// Proceedings of 2013 6th International Congress on Image and Signal Processing (CISP).Hangzhou, 2013:840-845.
[44] Vibhute A D, Dhumal R, Nagne A, et al. Evaluation of soil conditions using spectral indices from hyperspectral datasets[C]// Proceedings of 2017 2nd International Conference on Man and Machine Interfacing (MAMI).Bhubaneswar, 2017:1-6.
[45] Liang L, Di L P, Zhang L P, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165:123-134.
doi: 10.1016/j.rse.2015.04.032 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715001741
[46] Mao K, Qin Z, Shi J, et al. A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26(15):3181-3204.
doi: 10.1080/01431160500044713 url: https://www.tandfonline.com/doi/full/10.1080/01431160500044713
[47] Sobrino J A, Jimenez-Munoz J C, Soria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2):316-327.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[48] Sholehkerdar A, Tavakoli J, Liu Z. Theoretical analysis of Tsallis entropy-based quality measure for weighted averaging image fusion[J]. Information Fusion, 2020, 58:69-81.
doi: 10.1016/j.inffus.2019.12.010 url: https://linkinghub.elsevier.com/retrieve/pii/S156625351830383X
[49] Wang Y H, Liu Y M. Bayesian entropy network for fusion of different types of information[J]. Reliability Engineering and System Safety, 2020, 195:106747.
doi: 10.1016/j.ress.2019.106747 url: https://linkinghub.elsevier.com/retrieve/pii/S0951832018313115
[50] Li X F. TOPSIS model with entropy weight for eco geological environmental carrying capacity assessment[J]. Microprocessors and Microsystems, 2021:103805.
[51] Sreeparvathy V, Srinivas V V. A fuzzy entropy approach for design of hydrometric monitoring networks[J]. Journal of Hydrology, 2020, 586:124797.
doi: 10.1016/j.jhydrol.2020.124797 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169420302572
[52] Shen L Y, Zhou J Y, Xia B, et al. Application of a hybrid Entropy-McKinsey Matrix method in evaluating sustainable urbanization:A China case study[J]. Cities, 2015, 42:186-194.
doi: 10.1016/j.cities.2014.06.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0264275114000948
[53] 黄静, 赵庚星, 奚雪, 等. 光谱与纹理信息结合的黄河三角洲土壤盐渍化信息提取——以垦利区为例[J]. 农业资源与环境学报, 2022, 39(3):594-601.
[53] Huang J, Zhao G X, Xi X, et al. Extraction of soil salinization information by combining spectral and texture data in the Yellow River Delta:A case study in Kenli District,Shandong Province[J]. Journal of Agricultural Resources and Environment, 2022, 39(3):594-601.
[54] 曹建荣, 刘文全, 黄翀, 等. 基于Landsat TM/ETM影像的黄河三角洲盐渍土动态变化分析[J]. 水土保持通报, 2014, 34(6):179-183,371.
[54] Cao J R, Liu W Q, Huang C, et al. Analysis on dynamic variation of salinized soil in Yellow River Delta based on Landsat TM/ETM image[J]. Bulletin of Soil and Water Conservation, 2014, 34(6):179-183,371.
[1] DAI Yunhao, GUAN Yao, FENG Chunyong, JIANG Min, HE Xinghong. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling[J]. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.
[2] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[3] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[4] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[5] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[6] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[7] Chuan WANG, Jinghui FAN, Simei LIN, Yueming RAO, Huaguo HUANG. Study of the correlation between optical vegetation index and SAR data and the main affecting factors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 130-137.
[8] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[9] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[10] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[11] Jianhui XU, Yi ZHAO, Minghong XIAO, Kaiwen ZHONG, Huihua RUAN. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 186-194.
[12] Yali ZHANG, Tashpolat·Teyibai, Ardak·Kelimu, Dong ZHANG, Ilyas·Nuermaimaiti, Fei ZHANG. Estimation model of soil salinization based on Landsat8 OLI image spectrum[J]. Remote Sensing for Land & Resources, 2018, 30(1): 87-94.
[13] Kun LU, Qingyan MENG, Yunxiao SUN, Zhenhui SUN, Linlin ZHANG. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
[14] LIANG Shouzhen, SUI Xueyan, YAO Huimin, WANG Meng, HOU Xuehui, CHEN Jinsong, MA Wandong. An analysis of influence of non-photosynthetic vegetation of deciduous broad-leaved forest on canopy FPAR: A method based on layered simulation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 29-36.
[15] SONG Yang, FANG Shibo, LIANG Hanyue, KE Lina. Comparison and application of agricultural drought indexes based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 215-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech