Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 1-14     DOI: 10.6046/zrzyyg.2021433
|
A review of pansharpening methods based on deep learning
HU Jianwen(), WANG Zeping, HU Pei
School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
Download: PDF(1720 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the fast development and wide application of remote sensing technology, remote sensing images with higher quality are needed. However, it is difficult to directly acquire high-resolution, multispectral remote sensing images. To obtain high-quality images by integrating the information from different imaging sensors, pansharpening technology emerged. Pansharpening is an effective method used to obtain multispectral images with high spatial resolution. Many scholars have studied this method and obtained fruitful achievements. In recent years, deep learning theory has developed rapidly and has been widely applied in pansharpening. This study aims to systematically introduce the progress in pansharpening and promote its development. To this end, this study first introduced the traditional, classical pansharpening methods, followed by commonly used remote sensing satellites. Then, this study elaborated on the pansharpening methods based on deep learning from the perspective of supervised learning, unsupervised learning, and semi-supervised learning. After that, it described and analyzed loss functions. To demonstrate the superiority of the pansharpening methods based on deep learning and analyze the effects of loss functions, this study conducted remote sensing image fusion experiments. Finally, this study presented the future prospects of the pansharpening methods based on deep learning.

Keywords remote sensing image      pansharpening      deep learning      convolutional neural network     
ZTFLH:  TP391.4  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianwen HU
Zeping WANG
Pei HU
Cite this article:   
Jianwen HU,Zeping WANG,Pei HU. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021433     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/1
卫星名称及图像 波段数 空间分辨率/m 光谱范围/nm 重访周期/d
GaoFen-1 PAN 1 2 450~900 4
MS 4 8 蓝光: 450~520,绿光: 520~590,
红光: 630~690,近红外: 770~890
GaoFen-2 PAN 1 1 450~900 5
MS 4 4 蓝光: 450~520,绿光: 520~590,
红光: 630~690,近红外: 770~890
GeoEye-1 PAN 1 0.46 450~800 3
MS 4 1.84 蓝光: 450~510,绿光: 510~580,
红光: 655~690,近红外: 780~920
IKONOS PAN 1 1 526~929 3
MS 4 4 蓝光: 445~516,绿光: 506~595,
红光: 632~698,近红外: 757~853
QuickBird PAN 1 0.61 405~1 053 1~6
MS 4 2.44 蓝光: 430~545,绿光: 466~620,
红光: 590~710,近红外: 715~918
WorldView-2 PAN 1 0.5 450~800 1.1
MS 8 2 蓝光: 450~510,绿光: 510~580,
红光: 630~690,近红外: 770~895,
海岸: 400~450,黄色: 585~625,
红色边缘: 705~745,近红外2: 860~1 040
WorldView-3 PAN 1 0.31 450~800 1
MS 8 1.24 蓝光: 445~517,绿光: 507~586,
红光: 626~696,近红外: 765~899,
海岸: 397~454,黄色: 580~629,
红色边缘: 698~749,近红外2: 857~1 039
Tab.1  Basic parameters of common satellites
Fig.1  Classification of pansharpening based on deep learning
Fig.2  Pansharpening based on supervised learning
方法类别 主要网络结构 特点
残差学习方法 采用残差连接,提高了信息的流通,避免了由于网络过深所引起的梯度消失问题和退化问题
密集连接方法 密集网络作为基础网络,采用密集连接来加强信息的传递
注意力机制方法 采用注意力机制自适应调节重要信息,提高特征提取的准确率
双分支网络方法 采用2个分支分别提取全色图像和多光谱图像的特征,然后利用融合网络融合所提取的特征
金字塔网络方法 利用金字塔网络对输入图像从低空间分辨率到高空间分辨率(或从高空间分辨率到低空间分辨率)提取不同尺度特征
编码-解码网络方法 由编码器和解码器构成的对称网络,编码器提取不同尺度特征,解码器还原各尺度信息
两阶段网络方法 2个阶段都有着各自任务,发挥不同作用
多尺度卷积核方法 采用多个大小不同的卷积核对图像分别进行特征提取以获得不同感受野的特征信息
Tab.2  Comparison among pansharpening methods based on supervised learning
Fig.3  Pansharpening based on generative dversarial network
算法 Q SAM ERGAS SCC QN QNR
GS 0.816 8 6.711 1 4.580 6 0.827 3 0.820 7 0.867 7
BDSD 0.853 8 8.081 8 4.733 2 0.830 7 0.858 3 0.896 5
GLP 0.866 9 6.432 2 4.125 0 0.849 9 0.872 1 0.800 4
PNN 0.931 1 5.089 0 2.979 8 0.930 6 0.929 5 0.913 0
PanNet 0.938 2 4.847 9 2.851 7 0.935 1 0.935 9 0.929 0
DCCNP 0.935 1 5.076 3 2.951 5 0.935 8 0.933 6 0.915 2
RSIFNN 0.934 7 5.132 3 2.917 3 0.930 1 0.933 4 0.928 8
TFNet 0.941 6 4.613 7 2.774 3 0.943 1 0.939 9 0.918 6
MSDCNN 0.935 1 4.939 9 2.891 9 0.936 3 0.933 2 0.928 7
NLRNet 0.943 3 4.360 2 2.929 6 0.948 3 0.939 9 0.943 3
MDCNN 0.941 6 4.365 5 2.706 3 0.947 9 0.940 1 0.948 8
SDS 0.948 3 4.348 1 2.596 9 0.951 7 0.946 4 0.955 6
Tab.3  Comparison of pansharpening methods
融合网络 类别 损失函数 Q SAM ERGAS SCC QN QNR
PNN 空间损失 MSE 0.931 1 5.089 0 2.979 8 0.930 6 0.929 5 0.913 0
MAE 0.929 1 5.133 6 3.033 7 0.928 7 0.927 6 0.895 6
SSIM 0.821 6 15.413 1 9.500 0 0.923 6 0.675 7 0.814 5
MSE+SSIM 0.938 1 5.131 1 2.984 0 0.931 0 0.934 6 0.932 9
MAE+SSIM 0.937 2 5.066 7 2.964 4 0.930 9 0.934 8 0.926 6
光谱损失 SAM 0.566 2 4.712 8 8.928 9 0.503 4 0.539 0 0.641 0
空谱损失 MSE+SAM 0.878 7 5.088 3 3.594 5 0.916 6 0.877 6 0.867 1
MAE+SAM 0.928 1 5.061 6 3.035 3 0.928 3 0.927 1 0.900 7
MSE+SAM+SSIM 0.937 7 5.015 0 2.977 7 0.931 4 0.933 9 0.928 2
MAE+SAM+SSIM 0.934 1 5.146 0 3.020 2 0.925 5 0.931 5 0.923 4
Tab.4  Performance comparison of different loss function
[1] 肖亮, 刘鹏飞, 李恒. 多源空—谱遥感图像融合方法进展与挑战[J]. 中国图象图形学, 2020, 25(5):851-863.
[1] Xiao L, Liu P F, Li H. Progress and challenges in the fusion of multisource spatial-spectral remote sensing images[J]. Journal of Image and Graphics, 2020, 25(5):851-863.
[2] Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32:75-89.
doi: 10.1016/j.inffus.2016.03.003 url: https://linkinghub.elsevier.com/retrieve/pii/S1566253516300173
[3] 张丽霞, 曾广平, 宣兆成. 多源图像融合方法的研究综述[J]. 计算机工程与科学, 2021:1-14.
[3] Zhang L X, Zeng G P, Xuan Z C. A survey of fusion methods for multi-source image[J]. Computer Engineering and Science, 2021:1-14.
[4] 杨丽萍, 马孟, 谢巍, 等. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
doi: 10.6046/gtzyyg.2019.04.02
[4] Yang L P, Ma M, Xie W, et al. Fusion algorithm evaluation of Landsat8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land and Resources, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
doi: 10.6046/gtzyyg.2019.04.02
[5] Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications:A meta-review[J]. Remote Sensing of Environment, 2020, 236:111402-111420.
doi: 10.1016/j.rse.2019.111402 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719304213
[6] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.
doi: 10.6046/zrzyyg.20200372
[6] Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.
doi: 10.6046/zrzyyg.20200372
[7] 王琳, 李迅, 包云轩, 等. 遥感技术在交通气象灾害监测中的应用进展[J]. 国土资源遥感, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.
doi: 10.6046/gtzyyg.2018.04.01
[7] Wang L, Li X, Bao Y X, et al. Research progress of remote sensing application on transportation meteorological disasters[J]. Remote Sensing and for Land and Resources, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.
doi: 10.6046/gtzyyg.2018.04.01
[8] 王洪斌, 肖嵩, 曲家慧, 等. 基于多分支CNN高光谱与全色影像融合处理[J]. 光学学报, 2021, 41(7):55-63.
[8] Wang H B, Xiao S, Qu J H, et al. Pansharpening based on multi-branch CNN[J]. Acta Optica Sinica, 2021, 41(7):55-63.
[9] 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061.
[9] Zhang L P, Shen H F. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061.
[10] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.
[10] Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166.
[11] 张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4):603-619.
[11] Zhang L F, Peng M Y, Sun X J, et al. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4):603-619.
[12] Meng X, Shen H, Li H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:Practical discussion and challenges[J]. Information Fusion, 2019, 46:102-113.
doi: 10.1016/j.inffus.2018.05.006 url: https://linkinghub.elsevier.com/retrieve/pii/S1566253517306036
[13] Javan F D, Samadzadegan F, Mehravar S, et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:101-117.
doi: 10.1016/j.isprsjprs.2020.11.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271620303002
[14] Vivone G, Mura M D, Garzelli A, et al. A new benchmark based on recent advances in multispectral pansharpening:Revisiting pansharpening with classical and emerging pansharpening methods[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 9(1):53-81.
doi: 10.1109/MGRS.6245518 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245518
[15] Huang W, Xiao L, Wei Z, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1037-1041.
doi: 10.1109/LGRS.2014.2376034 url: http://ieeexplore.ieee.org/document/7018004/
[16] Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594-615.
doi: 10.3390/rs8070594 url: http://www.mdpi.com/2072-4292/8/7/594
[17] Shahdoosti H R, Ghassemian H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter[J]. Information Fusion, 2016, 27:150-160.
doi: 10.1016/j.inffus.2015.06.006 url: https://linkinghub.elsevier.com/retrieve/pii/S1566253515000573
[18] Laben C A, Brower B V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:U.S.,US09/069232[P]. 2000-01-04.
[19] Ghahremani M, Ghassemian H. Nonlinear IHS:A promising method for pan-sharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1606-1610.
doi: 10.1109/LGRS.2016.2597271 url: http://ieeexplore.ieee.org/document/7548323/
[20] Garzelli A, Nencini F, Capobianco L. Optimal MMSE pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 46(1):228-236.
doi: 10.1109/TGRS.2007.907604 url: http://ieeexplore.ieee.org/document/4389066/
[21] Aiazzi B, Alparone L, Baronti S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596.
doi: 10.14358/PERS.72.5.591 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=72&issue=5&spage=591
[22] Vivone G, Restaino R, Chanussot J. Full scale regression-based injection coefficients for panchromatic sharpening[J]. IEEE Transactions on Image Processing, 2018, 27(7):3418-3431.
doi: 10.1109/TIP.2018.2819501 pmid: 29671744
[23] Khan M M, Chanussot J, Condat L, et al. Indusion:Fusion of multispectral and panchromatic images using the induction scaling technique[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):98-102.
doi: 10.1109/LGRS.2007.909934 url: http://ieeexplore.ieee.org/document/4383354/
[24] Dong L, Yang Q, Wu H, et al. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform[J]. Neurocomputing, 2015, 159:268-274.
doi: 10.1016/j.neucom.2015.01.050 url: https://linkinghub.elsevier.com/retrieve/pii/S0925231215000958
[25] El-Mezouar M C, Kpalma K, Taleb N, et al. A pan-sharpening based on the non-subsampled contourlet transform:Application to WorldView-2 imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1806-1815.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[26] 曹义亲, 杨世超, 谢舒慧. 基于NSST的PCNN-SR卫星遥感图像融合方法[J]. 航天控制, 2020, 38(2):44-50.
[26] Cao Y Q, Yang S C, Xie S H. Satellite remote sensing image fusion method based on NSST and PCNN-SR[J]. Aerospce Control, 2020, 38(2):44-50.
[27] 吴一全, 王志来. 混沌蜂群优化的NSST域多光谱与全色图像融合[J]. 遥感学报, 2017, 21(4):549-557.
[27] Wu Y Q, Wang Z L. Multispectral and panchromatic image fusion using chaotic Bee Colony optimization in NSST domain[J]. Journal of Remote Sensing, 2017, 21(4):549-557.
[28] Li S, Yang B. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(2):738-746.
doi: 10.1109/TGRS.2010.2067219 url: http://ieeexplore.ieee.org/document/5599293/
[29] Yin H. PAN-guided cross-resolution projection for local adaptive sparse representation-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4938-4950.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[30] 李成轶, 田淑芳. 基于字典学习的遥感影像超分辨率融合方法[J]. 国土资源遥感, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.
doi: 10.6046/gtzyyg.2017.01.08
[30] Li C Y, Tian S F. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. Remote Sensing and for Land and Resources, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.
doi: 10.6046/gtzyyg.2017.01.08
[31] Yin H. Sparse representation based pansharpening with details injection model[J]. Signal Processing, 2015, 113:218-227.
doi: 10.1016/j.sigpro.2014.12.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0165168414005799
[32] Li S, Yin H, Fang L. Remote sensing image fusion via sparse representations over learned dictionaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4779-4789.
doi: 10.1109/TGRS.2012.2230332 url: http://ieeexplore.ieee.org/document/6428669/
[33] Scarpa G, Vitale S, Cozzolino D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9),5443-5457.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[34] Wei Y, Yuan Q, Shen H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10),1795-1799.
doi: 10.1109/LGRS.2017.2736020 url: http://ieeexplore.ieee.org/document/8012503/
[35] Yang J, Fu X, Hu Y, et al. PanNet:A deep network architecture for pan-sharpening[C]// Proceedings of the IEEE International Conference on Computer Vision.IEEE,Venice,Italy, 2017:5449-5457.
[36] Zhang H, Ma J. GTP-PNet:A residual learning network based on gradient transformation prior for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172:223-239.
doi: 10.1016/j.isprsjprs.2020.12.014 url: https://linkinghub.elsevier.com/retrieve/pii/S092427162030352X
[37] Yang Y, Tu W, Huang S, et al. PCDRN:Progressive cascade deep residual network for pansharpening[J]. Remote Sensing, 2020, 12(4):676.
doi: 10.3390/rs12040676 url: https://www.mdpi.com/2072-4292/12/4/676
[38] Huang W, Feng J, Wang H, et al. A new architecture of densely connected convolutional networks for pan-sharpening[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):242.
doi: 10.3390/ijgi9040242 url: https://www.mdpi.com/2220-9964/9/4/242
[39] Peng J, Liu L, Wang J, et al. PSMD-Net:A novel pan-sharpening method based on a multiscale dense network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6):4957-4971.
doi: 10.1109/TGRS.2020.3020162 url: https://ieeexplore.ieee.org/document/9198919/
[40] Luo S, Zhou S, Qi Y. CSAFNET:Channel similarity attention fusion network for multispectral pansharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2020.
[41] 孔爱玲, 张承明, 李峰, 等. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.
doi: 10.6046/zrzyyg.2021179
[41] Kong A L, Zhang C M, Li F, et al. Knowledge-based remote sensing imagery fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.
doi: 10.6046/zrzyyg.2021179
[42] Jiang M, Shen H, Li J, et al. A differential information residual convolutional neural network for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:257-271.
doi: 10.1016/j.isprsjprs.2020.03.006 url: https://linkinghub.elsevier.com/retrieve/pii/S092427162030068X
[43] Lei D, Chen H, Zhang L, et al. NLRNet:An efficient nonlocal attention resnet for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5401113.
[44] Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5),1656-1669.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[45] Liu X, Liu Q, Wang Y. Remote sensing image fusion based on two-stream fusion network[J]. Information Fusion, 2020,55,1-15.
[46] Fu S, Meng W, Jeon G, et al. Two-path network with feedback connections for pan-sharpening in remote sensing[J]. Remote Sensing, 2020, 12(10),1674.
[47] He L, Xi D, Li J, et al. A spectral-aware convolutional neural network for pansharpening[J]. Applied Sciences, 2020, 10(17),5809.
[48] Zhang Y, Liu C, Sun M, et al. Pan-sharpening using an efficient bidirectional pyramid network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8),5549-5563.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[49] Fang S, Wang X, Zhang J, et al. Pan-sharpening based on parallel pyramid convolutional neural network[C]// IEEE International Conference on Image Processing (ICIP), 2020:453-457.
[50] 方帅, 方赛华, 姚宏亮. 基于深度金字塔网络的Pan-Sharpening算法[J]. 计算机辅助设计与图形学学报, 2019, 31(10):1831-1837.
[50] Fang S, Fang S H, Yao H L. Pan-sharpening based on a deep pyramid network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(10):1831-1837.
[51] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
[52] Yao W, Zeng Z, Lian C, et al. Pixel-wise regression using U-Net and its application on pansharpening[J]. Neurocomputing, 2018, 312:364-371.
doi: 10.1016/j.neucom.2018.05.103 url: https://linkinghub.elsevier.com/retrieve/pii/S0925231218307008
[53] Wang W, Zhou Z, Liu H, et al. MSDRN:Pansharpening of multispectral images via multi-scale deep residual network[J]. Remote Sensing, 2021, 13(6):1200.
doi: 10.3390/rs13061200 url: https://www.mdpi.com/2072-4292/13/6/1200
[54] Lai Z, Chen L, Jeon G, et al. Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network[J]. Journal of Real-Time Image Processing, 2021:1-17.
[55] Benzenati T, Kallel A, Kessentini Y. Two stages pan-sharpening details injection approach based on very deep residual networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6),4984-4992.
doi: 10.1109/TGRS.2020.3019835 url: https://ieeexplore.ieee.org/document/9198089/
[56] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[57] Hu J, Du C, Fan S. Two-stage pansharpening based on multi-level detail injection network[J]. IEEE Access, 2020, 8:156442-156455.
doi: 10.1109/Access.6287639 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
[58] Zhang L, Zhang J, Ma J, et al. SC-PNN:Saliency cascade convolutional neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021:1-19.
[59] Li W, Liang X, Dong M. MDECNN:A multiscale perception dense encoding convolutional neural network for multispectral pan-sharpening[J]. Remote Sensing, 2021, 13(3):535.
doi: 10.3390/rs13030535 url: https://www.mdpi.com/2072-4292/13/3/535
[60] Yuan Q, Wei Y, Meng X, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):978-989.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[61] Hu J, Hu P, Kang X, et al. Pan-sharpening via multiscale dynamic convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3):2231-2244.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[62] Guo Y, Ye F, Gong H. Learning an efficient convolution neural network for pansharpening[J]. Algorithms, 2019, 12(1):16.
doi: 10.3390/a12010016 url: https://www.mdpi.com/1999-4893/12/1/16
[63] Hu J, Hu P, Wang Z P, et al. Spatial dynamic selection network for remote-sensing image fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8013205.
[64] Hu J, He Z, Wu J. Deep self-learning network for adaptive pansharpening[J]. Remote Sensing, 2019, 11(20):2395.
doi: 10.3390/rs11202395 url: https://www.mdpi.com/2072-4292/11/20/2395
[65] Liu J, Feng Y, Zhou C, et al. PWnet:An adaptive weigh network for the fusion of panchromatic and multispectral images[J]. Remote Sensing, 2020, 12(17):2804.
doi: 10.3390/rs12172804 url: https://www.mdpi.com/2072-4292/12/17/2804
[66] Deng L J, Vivone G, Jin C, et al. Detail injection-based deep convolutional neural networks for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020:1-16.
[67] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144.
doi: 10.1145/3422622 url: https://dl.acm.org/doi/10.1145/3422622
[68] Ma J, Yu W, Chen C, et al. Pan-GAN:An unsupervised pan-sharpening method for remote sensing image fusion[J]. Information Fusion, 2020, 62:110-120.
doi: 10.1016/j.inffus.2020.04.006 url: https://linkinghub.elsevier.com/retrieve/pii/S1566253520302591
[69] Zhou C, Zhang J, Liu J, et al. PercepPan:Towards unsupervised pan-sharpening based on perceptual loss[J]. Remote Sensing, 2020, 12(14):2318.
doi: 10.3390/rs12142318 url: https://www.mdpi.com/2072-4292/12/14/2318
[70] Xiong Z, Guo Q, Liu M, et al. Pan-sharpening based on convolutional neural network by using the loss function with no-reference[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:897-906.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[71] Luo S, Zhou S, Feng Y, et al. Pansharpening via unsupervised convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4295-4310.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[72] 杜晨光, 胡建文, 胡佩. 半监督卷积神经网络遥感图像融合[J], 电子测量与仪器学报, 2021, 35(6):63-70.
[72] Du C G, Hu J W, Hu P. Semi-supervised convolutional neural network remote sensing image fusion[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(6):63-70.
[73] Vitale S, Scarpa G. A detail-preserving cross-scale learning strategy for CNN-based pansharpening[J]. Remote Sensing, 2020, 12(3):348.
doi: 10.3390/rs12030348 url: https://www.mdpi.com/2072-4292/12/3/348
[74] 黄珊珊, 江倩, 金鑫, 等. 结合双胞胎结构与生成对抗网络的半监督遥感图像融合[J]. 计算机辅助设计与图形学学报, 2021, 33(1):92-105.
[74] Huang S S, Jiang Q, Jin X, et al. Semi-supervised remote sensing image fusion method combining siamese structure with generative adversarial networks[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(1):92-105.
doi: 10.3724/SP.J.1089.2021.18227 url: https://engine.scichina.com/doi/10.3724/SP.J.1089.2021.18227
[75] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C]// International Conference on Machine Learning.PMLR, 2017:214-223.
[76] Mirza M, Osindero S. Conditional generative adversarial nets[J]. Computer Science, 2014:2672-2680.
[77] Liu X, Deng C, Zhao B, et al. Feature-level loss for multispectral pan-sharpening with machine learning[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS).IEEE, 2018:8062-8065.
[78] Xu H, Ma J, Shao Z, et al. SDPNet:A deep network for pan-sharpening with enhanced information representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5):4120-4134.
doi: 10.1109/TGRS.2020.3022482 url: https://ieeexplore.ieee.org/document/9200533/
[79] Choi J S, Kim Y, Kim M. S3:A spectral-spatial structure loss for pan-sharpening networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5):829-833.
doi: 10.1109/LGRS.8859 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
[80] Eghbalian S, Ghassemian H. Multi spectral image fusion by deep convolutional neural network and new spectral loss function[J]. International Journal of Remote Sensing, 2018, 39(12):3983-4002.
doi: 10.1080/01431161.2018.1452074 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1452074
[81] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]// European Conference on Computer Vision.Springer,Cham, 2016:694-711.
[82] Bello J L G, Seo S, Kim M. Pan-sharpening with color-aware perceptual loss and guided re-colorization[C]// IEEE International Conference on Image Processing (ICIP).IEEE, 2020:908-912.
[83] Vivone G, Alparone L, Chanussot J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5):2565-2586.
doi: 10.1109/TGRS.2014.2361734 url: http://ieeexplore.ieee.org/document/6998089/
[84] Alparone L, Aiazzi B, Baronti S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(2):193-200.
doi: 10.14358/PERS.74.2.193 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=74&issue=2&spage=193
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[5] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[6] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[7] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[8] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[9] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[10] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[11] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[12] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[13] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[14] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[15] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech