Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 117-123     DOI: 10.6046/zrzyyg.2023227
|
Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model
KANG Hui1,2(), DOU Wenzhang1,3, HAN Lingyi4(), DING Ziyue4, WU Liangting4, HOU Lu5
1. School of Software and Microelectronics, Peking University,Beijing 102600, China
2. China Mobile Group Beijing Company Limited, Beijing 100007, China
3. Peking University Institute for Strategy Studies, Beijing 100091,China
4. China Areo Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
5. School of Information and Engineering,Beijing University of Posts and Telecommunications, Beijing 100876, China
Download: PDF(5098 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Keywords surface water      GF-1 satellite      DeepLabv3+      rapid remote sensing monitoring      accuracy evaluation     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui KANG
Wenzhang DOU
Lingyi HAN
Ziyue DING
Liangting WU
Lu HOU
Cite this article:   
Hui KANG,Wenzhang DOU,Lingyi HAN, et al. Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model[J]. Remote Sensing for Natural Resources, 2024, 36(4): 117-123.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023227     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/117
Fig.1  Flowchart of the proposed method
Fig.2  Network structure of DeepLabv3+
Fig.3  Visual interpretation of real reference examples
Fig.4  Location of study area
Fig.5  Comparison of extraction results by different methods
方法 真实结
果/像元
识别结果/像元 P/% R/% F1/%
水体 非水体
本文方法 水体 17 899 511 363 214 99.22 98.01 98.61
非水体 140 276 53 153 143
随机森林 水体 17 180 375 1 082 350 97.38 94.07 95.70
非水体 461 508 52 831 911
最大似然法 水体 17 870 609 392 116 94.73 97.85 96.27
非水体 993 349 52 300 070
支持向量机 水体 17 427 777 834 948 90.27 95.43 92.78
非水体 1 878 229 51 415 790
Tab.1  Comparison of extraction accuracy of different methods
年份 面积 年份 面积
2013年 99.222 6 2018年 142.230 1
2014年 94.640 5 2019年 158.058 0
2015年 76.375 2 2020年 143.965 6
2016年 93.817 3 2021年 153.735 8
2017年 118.956 1 2022年 171.911 7
Tab.2  Statistics of surface water area in Miyun from 2013 to 2022 (km2)
Fig.6  Surface water extraction results in Miyun from 2013 to 2022
Fig.7  Variation trend of surface water area in Miyun from 2013 to 2022
[1] 苏龙飞, 李振轩, 高飞, 等. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1):9-19.doi:10.6046/gtzyyg.2020170.
[1] Su L F, Li Z X, Gao F, et al. A review of remote sensing image water extraction[J]. Remote Sensing for Land and Resources, 2021, 33(1):9-19.doi:10.6046/gtzyyg.2020170.
[2] Chen C, Liang J, Xie F, et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan Archipelago,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107:102711.
[3] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[4] 韦嫦, 付波霖, 覃娇玲, 等. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2):251-260.doi:10.6046/zrzyyg.2021205.
[4] Wei C, Fu B L, Qin J L, et al. Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2022, 34(2):251-260.doi:10.6046/zrzyyg.2021205.
[5] 董斯扬, 薛娴, 尤全刚, 等. 近40年青藏高原湖泊面积变化遥感分析[J]. 湖泊科学, 2014, 26(4):535-544.
[5] Dong S Y, Xue X, You Q G, et al. Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years[J]. Journal of Lake Sciences, 2014, 26(4):535-544.
[6] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
[6] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[7] 毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析[J]. 遥感信息, 2012, 27(5):77-82.
[7] Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2012, 27(5):77-82.
[8] 王春霞, 张俊, 李屹旭, 等. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
[8] Wang C X, Zhang J, Li Y X, et al. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
[9] 都金康, 黄永胜, 冯学智, 等. SPOT卫星影像的水体提取方法及分类研究[J]. 遥感学报, 2001, 5(3):214-219.
[9] Du J K, Huang Y S, Feng X Z, et al. Study on water bodies extraction and classification from SPOT image[J]. Journal of Remote Sensing, 2001, 5(3):214-219.
[10] Chen C, Chen H, Liang J, et al. Extraction of water body information from remote sensing imagery while considering greenness and wetness based on tasseled cap transformation[J]. Remote Sensing, 2022, 14(13):3001.
[11] 陈超, 傅姣琪, 随欣欣, 等. 面向灾后水体遥感信息提取的知识决策树构建及应用[J]. 遥感学报, 2018, 22(5):792-801.
[11] Chen C, Fu J Q, Sui X X, et al. Construction and application of knowledge decision tree after a disaster for water body information extraction from remote sensing images[J]. Journal of Remote Sensing, 2018, 22(5):792-801.
[12] 胡德勇, 李京, 陈云浩, 等. 单波段单极化SAR图像水体和居民地信息提取方法研究[J]. 中国图象图形学报, 2008, 13(2):257-263.
[12] Hu D Y, Li J, Chen Y H, et al. Water and settlement area extraction from single-band,single-polarization SAR images based on SVM method[J]. Journal of Image and Graphics, 2008, 13(2):257-263.
[13] 段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
[13] Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resources, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
[14] 张德军, 杨世琦, 王永前, 等. 基于GF-1数据的三峡库区水体信息精细化提取[J]. 人民长江, 2019, 50(9):233-239.
[14] Zhang D J, Yang S Q, Wang Y Q, et al. Refined water body information extraction of Three Gorges Reservoir by using GF-1 satellite data[J]. Yangtze River, 2019, 50(9):233-239.
[15] 王宁, 程家骅, 张寒野, 等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
[15] Wang N, Cheng J H, Zhang H Y, et al. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
[16] 李涛, 徐高, 梁思涵, 等. 人工智能图像识别在水利行业的应用进展[J]. 人民黄河, 2022, 44(11):163-168.
[16] Li T, Xu G, Liang S H, et al. Application progress of artificial intelligence image recognition in water conservancy industry[J]. Yellow River, 2022, 44(11):163-168.
[17] Han L, Hou L, Zheng X, et al. Segmentation is not the end of road extraction:An all-visible denoising autoencoder for connected and smooth road reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:4403818.
[18] 沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
[18] Shen J A, Ma M T, Song Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4):129-135.
[19] Zou Z, Chen C, Liu Z, et al. Extraction of aquaculture ponds along coastal region using U2-net deep learning model from remote sensing images[J]. Remote Sensing, 2022, 14(16):4001.
[20] 林娜, 王玉莹, 郭江, 等. 基于SegNet_CRF的遥感影像水体提取方法[J]. 测绘与空间地理信息, 2023, 46(3):12-15,18.
[20] Lin N, Wang Y Y, Guo J, et al. A method of water extraction from remote sensing images based on SegNet_CRF[J]. Geomatics & Spatial Information Technology, 2023, 46(3):12-15,18.
[21] 北京市密云区人民政府. 密云水库[EB/OL].[2023-01-13]. http://www.bjmy.gov.cn/col/ col4074/index.html.
url: http://www.bjmy.gov.cn/col/ col4074/index.html
[21] Miyun District People’s Government of Beijing Municipality. Miyun Reservoir[EB/OL]. 2023-01-13]. http://www.bjmy.gov.cn/col/col4074/index.html.
url: http://www.bjmy.gov.cn/col/col4074/index.html
[1] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[2] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[3] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[4] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[5] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[6] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[7] Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
[8] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[9] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
[10] Hongli SONG, Xiaonan ZHANG. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 26-32.
[11] WANG Ruijun, DONG Shuangfa, SUN Yongbin, LI Jingyue. Remote sensing interpretation and application of the geological unit of Suolake area in Xinjiang based on GF-1 satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 137-143.
[12] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[13] ZENG Zhi, ZHOU Yongfu, DU Zhenhong, LIU Renyi. A parameterized evaluation model of similarity on multi-target retrieval for remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 8-13.
[14] LU Yunge, LIU Cai, WANG Jiao. Integrated solutions for mine remote sensing monitoring based on domestic satellite images: A case study of Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech