|
|
|
|
|
|
Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province |
ZHANG Lijun1,2,3( ), HE Sirui2, ZHANG Jiandong2( ), PENG Guangxiong2, XU Zhibin1, XIE Jiancheng1, TANG Kai1, BU Jiancai1 |
1. Hunan Remote Sensing Geological Survey and Monitoring Institute, Changsha 410015, China 2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China 3. Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Natural Resources Affairs Center, Changsha 410004, China |
|
|
Abstract Due to the intricate geographical and geological environment, the mountainous-hilly area of Changli in northern Hunan Province is challenged by numerous, widespread, scattered, and frequent landslide hazards, which constitute the most significant geologic hazard that causes casualties and economic losses. The multi-source remote sensing technology integrating InSAR, optical remote sensing, LiDAR, and GIS is currently a high-feasibility and high-precision landslide hazard identification and monitoring technology, meeting the requirements for macroscale and timeliness. This study identified and extracted landslide hazards in the Changli area based on InSAR deformation rate data, multispectral images, and DEM data. First, two decision tree classification methods were employed to classify the land use types based on multispectral images, facilitating the observation of land use types and their distributions in the Changli area. Then, five topographic factors, including elevation, slope, aspect, undulation, and curvature, were extracted from DEM data to evaluate the landslide risk in the Changli area. Then, five topographic factors, such as elevation, slope, aspect, undulation and curvature, are extracted from DEM data to evaluate the landslide risk in the study area. Furthermore, the time-series surface microdeformation of the Changli area was measured based on SBAS-InSAR technology. Finally, landslide hazards were extracted and delineated in the GIS by combining risk assessment results and deformation rates. Additionally, based on the classification and regression tree (CART) results and the river system distribution in the Changli area, risk inference was conducted on zones with deformation rates exceeding -0.01 m/a except the delineated landslide hazard sites. This study identified several small-scale landslide hazards with high concealment in vegetation-covered and bare zones, delineating their spatial distribution ranges, which covered an area of 0.126 km2. The multi-source remote sensing technology proved effective, demonstrating certain practical application value.
|
Keywords
landslide hazard
DEM data
decision tree classification
SBAS-InSAR
Changli area in Hunan
|
|
Issue Date: 14 June 2024
|
|
|
[1] |
王治华. 中国滑坡遥感及新进展[J]. 国土资源遥感, 2007, 19(4):7-10.doi:10.6046/gtzyyg.2007.04.02.
|
[1] |
Wang Z H. Remote sensing for landslides in China and its recent progress[J]. Remote Sensing for Land and Resources, 2007, 19(4):7-10.doi:10.6046/gtzyyg.2007.04.02.
|
[2] |
王恭先. 滑坡学与滑坡防治技术[M]. 北京: 中国铁道出版社, 2004.
|
[2] |
Wang G X. Landslide science and landslide prevention technology[M]. Beijing: China Railway Publishing House, 2004.
|
[3] |
廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341.
|
[3] |
Liao M S, Dong J, Li M H, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341.
|
[4] |
薛东剑, 张东辉, 何政伟, 等. 多源遥感影像融合技术在地质灾害调查中的应用[J]. 遥感技术与应用, 2011, 26(5):664-669.
|
[4] |
Xue D J, Zhang D H, He Z W, et al. Application of multi-source remote sensing image fusion in geohazard investigation[J]. Remote Sensing Technology and Application, 2011, 26(5):664-669.
|
[5] |
赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
|
[5] |
Zhao Y S. Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2003.
|
[6] |
花利忠, 崔胜辉, 李新虎, 等. 汶川大地震滑坡体遥感识别及生态服务价值损失评估[J]. 生态学报, 2008, 28(12):5909-5916.
|
[6] |
Hua L Z, Cui S H, Li X H, et al. Remote sensing identification of earthquake trigged landsides and their impacts on ecosystem services:A case study of Wenchuan County[J]. Acta Ecologica Sinica, 2008, 28(12):5909-5916.
|
[7] |
Bouali E H, Oommen T, Escobar-Wolf R. Evidence of instability in previously-mapped landslides as measured using GPS,optical,and SAR data between 2007 and 2017:A case study in the Portuguese bend landslide complex,California[J]. Remote Sensing, 2019, 11(8):937.
|
[8] |
Tempa K, Peljor K, Wangdi S, et al. UAV technique to localize landslide susceptibility and mitigation proposal:A case of Rinchending Goenpa landslide in Bhutan[J]. Natural Hazards Research, 2021, 1(4):171-186.
|
[9] |
Dille A, Kervyn F, Handwerger A L, et al. When image correlation is needed:Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series[J]. Remote Sensing of Environment, 2021, 258:112402.
|
[10] |
李晓英. 常德市土地生态保护研究[D]. 西安: 长安大学, 2008.
|
[10] |
Li X Y. Study on the Changde Land Ecological Protection[D]. Xi’an: Changan University, 2008.
|
[11] |
洪明祥. 常德市科学制定"十五" 水利规划[J]. 宏观经济管理, 2001(9):41-42.
|
[11] |
Hong M X. Changde scientifically formulates the tenth five-year water conservancy plan[J]. Macroeconomic Management, 2001(9):41-42.
|
[12] |
陈丹婷, 彭渤, 方小红, 等. 洞庭湖“四水”入湖河床沉积物主量元素地球化学特征及意义[J]. 第四纪研究, 2021, 41(5):1267-1280.
|
[12] |
Chen D T, Peng B, Fang X H, et al. Geochemistry of major elements in bed sediments from inlets of the four rivers to Dongting Lake,China[J]. Quaternary Sciences, 2021, 41(5):1267-1280.
|
[13] |
李慧. 基于光学遥感和InSAR技术的滑坡早期识别与监测研究[D]. 广州: 广东工业大学, 2020.
|
[13] |
Li H. Study on early identification and monitoring of landslide based on optical remote sensing and InSAR technology[D]. Guangzhou: Guangdong University of Technology, 2020.
|
[14] |
梁芳, 杨维芳, 李蓉蓉. 基于SBAS-InSAR技术的矿区地表形变监测研究[J]. 地理空间信息, 2022, 20(11):44-48.
|
[14] |
Liang F, Yang W F, Li R R. Research on surface deformation monitoring in mining area based on SBAS-InSAR technology[J]. Geospatial Information, 2022, 20(11):44-48.
|
[15] |
万志强, 肖盛燮. 降雨型滑坡的形成及链式演化机理分析[J]. 西部交通科技, 2011(1):30-34.
|
[15] |
Wan Z Q, Xiao S X. Analysis of formation and chained evolution mechanism of land-slide induced by rainfall[J]. Western China Communications Science & Technology, 2011(1):30-34.
|
[16] |
龚燃. 哨兵-2A光学成像卫星发射升空[J]. 国际太空, 2015(8):36-40.
|
[16] |
Gong R. Sentinel-2A satellite launches[J]. Space International, 2015(8):36-40.
|
[17] |
Bar-Hen A, Gey S, Poggi J M. Influence measures for CART classification trees[J]. Journal of Classification, 2015, 32(1):21-45.
|
[18] |
Martin Y E, Franklin S E. Classification of soil- and bedrock-dominated landslides in British Columbia using segmentation of satellite imagery and DEM data[J]. International Journal of Remote Sensing, 2005, 26(7):1505-1509.
|
[19] |
李强, 张景发, 罗毅, 等. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-795.
|
[19] |
Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-795.
|
[20] |
陶海军, 杨静, 叶小军. 基于ASTER遥感数据源的Creator三维地形建模技术研究[J]. 电脑知识与技术, 2011, 7(17):4152-4154.
|
[20] |
Tao H J, Yang J, Ye X J. Three dimensional terrain modeling method with creator software based on the ASTER remote sensing data[J]. Computer Knowledge and Technology, 2011, 7(17):4152-4154.
|
[21] |
惠凤鸣, 田庆久, 李应成. Aster数据的DEM生产及精度评价[J]. 遥感信息, 2004, 19(1):14-18,63.
|
[21] |
Hui F M, Tian Q J, Li Y C. Production and accuracy assessment of DEM from ASTER stereo image data[J]. Remote Sensing Information, 2004, 19(1):14-18,63.
|
[22] |
张帆宇. 积石峡水电站坝后Ⅰ号滑坡演化过程及稳定性研究[D]. 兰州: 兰州大学, 2007.
|
[22] |
Zhang F Y. Study on evolution process and stability of the No.1 landslide at the downstream of the Jishxia hydropower station[D]. Lanzhou: Lanzhou University, 2007.
|
[23] |
张帆宇, 刘高, 谌文武, 等. 基于要素分析和二元统计模型的区域滑坡危险等级制图——以国道212线陇南段为例[J]. 地球科学进展, 2008, 23(10):1037-1042.
doi: 10.11867/j.issn.1001-8166.2008.10.1037
|
[23] |
Zhang F Y, Liu G, Chen W W, et al. A study of landslide susceptibility mapping based on factor analysis and bivariate statistics-With a case study in Longnan Area of national highway 212[J]. Advances in Earth Science, 2008, 23(10):1037-1042.
|
[24] |
李含璞. 数字高程模型格网间距对提取地形因子的影响研究[J]. 测绘与空间地理信息, 2021, 44(10):183-188.
|
[24] |
Li H P. Research on influence of DEM resolution on extraction of terrain factors[J]. Geomatics & Spatial Information Technology, 2021, 44(10):183-188.
|
[25] |
荀张媛. SAR与光学遥感融合在滑坡识别与监测中的应用[D]. 西安: 长安大学, 2020.
|
[25] |
Xun Z Y. Landslide identification and monitoring with the fusion of SAR and optical remote sensing[D]. Xi’an: Changan University, 2020.
|
[26] |
Niraj K C, Gupta S K, Shukla D P. Kotrupi landslide deformation study in non-urban area using DInSAR and MTInSAR techniques on Sentinel-1 SAR data[J]. Advances in Space Research, 2022, 70(12):3878-3891.
|
[27] |
Zhang T, Xie S, Fan J, et al. Detection of active landslides in southwest China using Sentinel-1 and ALOS-2 data[J]. Procedia Computer Science, 2021, 181:1138-1145.
|
[28] |
Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
|
[29] |
高腾飞. InSAR技术在地面沉降监测中的应用研究[D]. 青岛: 山东科技大学, 2018.
|
[29] |
Gao T F. Research on the application of InSAR technology in land subsidence monitoring[D]. Qingdao: Shandong University of Science and Technology, 2018.
|
[30] |
Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
|
[31] |
Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
|
[32] |
王刘宇. 联合SAR影像相位和强度信息的矿区形变监测关键技术研究[J]. 测绘学报, 2022, 51(9):1980.
doi: 10.11947/j.AGCS.2022.20210055
|
[32] |
Wang L Y. Study on key technologies of deformation monitoring in mining areas based on phase and intensity information of SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9):1980.
doi: 10.11947/j.AGCS.2022.20210055
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|