Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 214-225     DOI: 10.6046/zrzyyg.2022311
|
A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021
CUI Dunyue1(), WANG Shidong1, ZHANG Xuejun2()
1. School of Surveying and Mapping and Land Information Engineering, Henan University of Technology, Jiaozuo 454000, China
2. The Second Institute of Geology and Mineral Resources of Henan Bureau of Geology and Mineral Resources Exploration and Development, Zhengzhou 450001, China
Download: PDF(7174 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to analyze the changes in the land use and vegetation cover in the Xiong'an New Area from 1991 to 2021. To this end, this study explored the characteristics of the land use changes in the area over the 30 years based on the Landsat TM\OLI data of five periods using the GIS technology and map fusion method. Then, it extracted the vegetation cover information using the dimidiate pixel model and analyzed the changes in the vegetation cover. Furthermore, this study explored the potential factors driving the vegetation cover change in the area using the geographic detector model and analyzed the impact of land use change on vegetation cover change by referencing the existing map fusion method. The results show that: ① From 1991 to 2021, the construction land in Xiong’an New Area increased by 108.09 km2, primarily transformed from farmland and other types of land; other types of land reduced by 108.17 km2, predominantly transformed to farmland; forestland and grassland increased by 11.56 km2, mainly transformed from water areas and other types of land; the water area decreased by 38.76 km2, mainly transformed to farmland and other types of land; and the area of farmland roughly remained unchanged; ② Over the 30 years, the Xiong’an New Area generally exhibited high vegetation coverage, and the area with moderate and high vegetation coverage and above accounted for more than 50.00%. The vegetation coverage in the Xiong’an New Area presented an overall spatial distribution pattern characterized by high in Anxin County, moderate in Rongcheng County, and low in Xiong County. Regarding the phased changes, this area showed a degradation trend from 1991 to 2001, and the area with degraded vegetation cover accounted for 39.15%. From 2001 to 2021, this area exhibited an improvement trend, the area with improved vegetation cover accounted for up to 47.55%; ③ The vegetation cover change showed spatial differentiation, significantly affected by the population density, GDP, soil type, and soil quality but slightly affected by the elevation and slope. The transformation of construction land and other types of land to farmland acted as an important reason for the improvement in vegetation cover, while the transformation of farmland to construction land and other types of land served as an important reason for vegetation degradation. The results of this study can, to some extent, provide a scientific basis and suggestions for the sustainable development of Xiong’an New Area.

Keywords Xiong’an New Area      vegetation cover change      land use change      geographic detector      driving factors     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dunyue CUI
Shidong WANG
Xuejun ZHANG
Cite this article:   
Dunyue CUI,Shidong WANG,Xuejun ZHANG. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4): 214-225.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022311     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/214
Fig.1  Geographical location of Xiong’An New Area
Fig.2  Classification of invariant factors
Fig.3  Classification of variability factors
Fig.4  Land use map of Xiong’An New Area from 1991 to 2021
Fig.5  Map of main land use transformation types in Xiong’An New Area from 1991 to 2021
地类 面积/km2
1991年 2001年 2011年 2017年 2021年
建设用地 129.68 156.31 186.98 224.72 237.77
耕地 1 136.03 1 141.28 1 184.81 1 099.84 1 163.72
林草地 28.74 12.71 17.79 32.31 40.30
其他用地 131.79 99.21 84.09 150.79 23.62
水域 131.94 148.67 84.05 49.70 93.18
合计 1 558.18 1 558.18 1 557.72 1 557.36 1 558.59
Tab.1  Change of land use quantity structure in Xiong’An New Area from 1991 to 2021
转化类型
1991—2001年 2001—2011年 2011—2017年 2017—2021年
面积/km2 变化率/% 面积/km2 变化率/% 面积/km2 变化率/% 面积/km2 变化率/%
建设用地→耕地 12 46.87 10.66 60.80 17.00 41.13 9.18 44.86 13.13
耕地→建设用地 21 60.62 13.78 74.26 20.76 104.35 23.29 55.86 16.35
耕地→其他用地 24 83.96 19.09 47.25 13.21 101.46 22.65 18.85 5.52
其他用地→耕地 52 84.38 19.19 62.09 17.30 68.09 15.20 114.94 33.63
小计 275.83 62.72 244.40 68.27 315.03 70.32 234.51 68.63
建设用地→林草地 13 0.50 0.11 0.31 0.09 30.75 6.86 0.12 0.04
建设用地→其他用地 14 2.25 0.51 1.14 0.32 16.20 3.61 3.34 0.98
建设用地→水域 15 0.59 0.13 0.75 0.21 6.60 1.47 0.19 0.06
耕地→林草地 23 2.33 0.53 5.93 1.66 20.75 4.63 26.54 7.77
耕地→水域 25 36.26 8.25 0.77 0.22 8.30 1.85 15.95 4.67
林草地→建设用地 31 4.22 0.96 3.91 1.09 0.38 0.09 0.37 0.11
林草地→耕地 32 19.06 4.33 3.91 1.09 10.21 2.28 15.89 4.65
林草地→其他用地 34 1.24 0.28 0.39 0.11 3.78 0.84 0.10 0.03
林草地→水域 35 2.75 0.63 3.21 0.90 1.97 0.44 6.30 1.84
水域→建设用地 41 1.90 0.43 11.89 3.32 0.21 0.05 0.28 0.08
水域→耕地 42 38.10 8.66 52.10 14.57 4.23 0.94 3.29 0.96
水域→林草地 43 4.52 1.03 9.50 2.66 2.37 0.53 0.35 0.10
水域→其他用地 44 7.28 1.66 8.84 2.47 20.32 4.54 0.03 0.01
其他用地→建设用地 51 10.09 2.29 3.64 1.02 1.01 0.22 4.69 1.37
其他用地→林草地 53 3.89 0.88 0.93 0.26 3.51 0.78 3.60 1.05
其他用地→水域 55 28.94 6.58 6.05 1.69 2.40 0.53 26.20 7.67
变化总面积/km2 439.75 357.67 448.02 341.75
Tab.2  Area and proportion of land use transformation types in Xiong’An New Area from 1991 to 2021
植被覆盖度等级 低植被覆盖度 中低植被覆盖度 中等植被覆盖度 中高植被覆盖度 高植被覆盖度
面积/km2 190.60 187.89 393.37 447.97 336.11
占比/% 12.25 12.08 25.28 28.79 21.60
Tab.3  Average annual vegetation coverage of Xiong’An New Area
Fig.6  Spatial distribution of annual average vegetation coverage in Xiong’An New Area
植被覆盖
变化等级
1991—2001 2001—2011 2011—2017 2017—2021
面积/km2 比重/% 面积/km2 比重/% 面积/km2 比重/% 面积/km2 比重/%
严重退化 296.51 19.53 41.82 2.76 47.31 3.12 34.09 2.24
轻度退化 297.97 19.62 432.42 28.51 356.11 23.47 322.31 21.20
保持稳定 469.80 30.94 514.69 33.93 392.30 25.86 503.03 33.09
轻度改善 350.21 23.06 426.07 28.09 405.72 26.74 404.48 26.60
明显改善 104.03 6.85 101.89 6.71 315.58 20.81 256.46 16.87
Tab.4  Change trend of vegetation cover in Xiong’An New Area from 1991 to 2021
Fig.7  Map of vegetation cover change trend in Xiong’An New Area from 1991 to 2021
年份 X1 X2 X3 X4 X5 X6
1991—2001 0.144 2 0.104 5 0.041 5 0.005 2 0.115 6 0.104 2
2001—2011 0.093 4 0.125 8 0.061 8 0.032 6 0.138 6 0.112 8
2011—2017 0.138 1 0.116 8 0.015 4 0.002 4 0.128 3 0.167 3
2017—2021 0.187 9 0.153 5 0.024 1 0.015 0 0.148 2 0.094 5
Tab.5  Change trend of action intensity q value of driving factors
Fig.8  Impact of land use change on vegetation cover change
[1] Sun L, Wei J, Duan D H, et al. Impact of land-use and land-cover change on urban air quality in representative cities of China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 142:43-54.
doi: 10.1016/j.jastp.2016.02.022 url: https://linkinghub.elsevier.com/retrieve/pii/S1364682616300542
[2] 新华社. 中共中央、国务院决定设立河北雄安新区[EB/OL].(2017-04-01) [2017-05-31]. https://www.gov.cn/xinwen/2017-04/01/content5182824htm.
url: https://www.gov.cn/xinwen/2017-04/01/content5182824htm
[2] Xin Hua News Agency. The Central Committee of the Communist Party of China and the State Council decided to establish the Xiong’an new area in Hebei[EB/OL].(2017-04-01) [2017-05-31]. https://www.gov.cn/xinwen/2017-04/01/content5182824htm.
url: https://www.gov.cn/xinwen/2017-04/01/content5182824htm
[3] 吴昌广, 周志翔, 肖文发, 等. 基于MODIS NDVI的三峡库区植被覆盖度动态监测[J]. 林业科学, 2012, 48(1):22-28.
[3] Wu C G, Zhou Z X, Xiao W F, et al. Dynamic monitoring of vegetation cover in Three Gorges reservoir area based on MODIS NDVI[J]. Scientia Silvae Sinicae, 2012, 48(1):22-28.
[4] 刘斌, 罗全华, 常文哲, 等. 不同林草植被覆盖度的水土保持效益及适宜植被覆盖度[J]. 中国水土保持科学, 2008, 6(6):68-73.
[4] Liu B, Luo Q H. Chang W Z, et al. Soil and water conservation benefits of different forest and grass vegetation cover levels and suitable vegetation cover levels[J]. Soil and Water Conservation in China, 2008, 6(6):68-73.
[5] 何全军, 曹静, 张月维. 基于MODIS的广东省植被指数序列构建与应用[J]. 气象, 2008, 34(3):37-41.
[5] He Q J, Cao J, Zhang Y W. Construction and application of MODIS based vegetation index series in Guangdong Province[J]. Meteorological Monthly, 2008, 34(3):37-41.
[6] 彭飞, 范闻捷, 徐希孺, 等. 2000—2014年呼伦贝尔草原植被覆盖度时空变化分析[J]. 北京大学学报(自然科学版), 2017, 53(3):563-572.
[6] Peng F, Fan W J, Xu X R, et al. Analysis of spatial and temporal changes of vegetation cover in Hulunbuir grassland from 2000 to 2014[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3):563-572.
[7] 王思, 张路路, 林伟彪, 等. 基于MODIS-NDVI的广东省植被覆盖与土地利用变化研究[J]. 生态学报, 2022(6):2149-2163.
[7] Wang S, Zhang L L, Lin W B, et al. Research on vegetation cover and land use change in Guangdong Province based on MODIS-NDVI[J]. Acta Ecologica Sinica, 2022(6):2149-2163.
[8] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4):258-264.doi:10.6046/zrzyyg.2021019.
[8] Jin C M, Yang X W, Jing H T. RS-based study on vegetation cover changes and driving forces in northern Shaanxi[J]. Remote Sensing for Natural Resources, 2021, 33(4):258-264.doi:10.6046/zrzyyg.2021019.
[9] 苏迎庆, 刘庚, 赵景波, 等. 2006—2018年汾河流域土地生态安全预警测度及时空格局演变[J]. 水土保持通报, 2021, 41(1):144-151.
[9] Su Y Q, Liu G, Zhao J B, et al. Evolution of early warning measures and spatial and temporal patterns of land ecological security in the Fen River Basin from 2006-2018[J]. Bulletin of Soil and Water Conservation, 2021, 41(1):144-151.
[10] Kallimanis A S, Touloumis K, Tzanopoulos J, et al. Vegetation coverage change in the EU:Patterns inside and outside Natura 2000 protected areas[J]. Biodiversity and Conservation, 2015, 24(3): 579-591.
doi: 10.1007/s10531-014-0837-9 url: http://link.springer.com/10.1007/s10531-014-0837-9
[11] Jung G, Prange M, Schulz M. Influence of topography on tropical African vegetation coverage[J]. Climate Dynamics, 2016, 46(7):2535-2549.
doi: 10.1007/s00382-015-2716-9 url: http://link.springer.com/10.1007/s00382-015-2716-9
[12] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
[12] Wang J F, Xu C D. Geodetectors:Principles and perspectives[J]. Acta Geographica Scinica, 2017, 72(1):116-134.
[13] Wang G J, Peng W F. Quantifying spatiotemporal dynamics of vegetation and its differentiation mechanism based on geographical detector[J]. Environmental Science and Pollution Research, 2022, 29(21):32016-32031.
doi: 10.1007/s11356-021-17544-w
[14] Deng X J, Hu S Z, Che S. Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin,China[J]. Environmental Science and Pollution Researchinternational, 2022: 1-16.
[15] 彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9):1758-1776.
doi: 10.11821/dlxb201909005
[15] Peng W F, Zhang D M, Luo Y M, et al. Geographical detection of natural factors on NDVI changes in Sichuan vegetation[J]. Acta Geographica Scinica, 2019, 74(9):1758-1776.
[16] 李丹, 周嘉, 战大庆. 黑龙江省耕地时空变化及驱动因素分析[J]. 地理科学, 2021, 41(7):1266-1275.
doi: 10.13249/j.cnki.sgs.2021.07.017
[16] Li D, Zhou J, Zhan D Q. Analysis of spatial and temporal changes in arable land and drivers in Heilongjiang Province[J]. Scientia Geographica Sinica, 2021, 41(7):1266-1275.
[17] 祁鹏卫, 张贤. 2000—2019年重庆市植被覆盖时空变化特征及其驱动因素[J]. 生态学报, 2022, 42(13):5427-5436.
[17] Qi P W, Zhang X. Analysis of spatial and temporal variation characteristics of vegetation cover and its driving factors in Chongqing from 2000 to 2019[J]. Acta Ecologica Sinica, 2022, 42(13):5427-5436.
[18] 赵子娟, 范蓓蕾, 王玉庭, 等. 2000—2018年西辽河流域植被覆盖度时空变化特征及影响因素研究[J]. 中国农业资源与区划, 2021, 42(12):75-88.
[18] Zhao Z J, Fan B L, Wang Y T, et al. Study on the characteristics of spatial and temporal changes of vegetation cover and influencing factors in the West Liaoning River Basin from 2000 to 2018[J]. Journal of China Agricultural Resources and Regional Planning, 2021, 42(12):75-88.
[19] 贾玉娜, 张文超, 康会涛, 等. 2016-2019年雄安新区土地覆盖变化研究[J]. 测绘通报, 2020(9):76-79.
doi: 10.13474/j.cnki.11-2246.2020.0287
[19] Jia Y N, Zhang W C, Kang H T, et al. A study of land cover changes in Xiongan New Area from 2016 to 2019[J]. Bulletin of Surveying and Mapping, 2020(9):76-79.
[20] 姜鲁光, 吕佩忆, 封志明, 等. 雄安新区土地利用空间特征及起步区方案比选研究[J]. 资源科学, 2017, 39(6):991-998.
doi: 10.18402/resci.2017.06.01
[20] Jiang L G, Lv P Y, Feng Z M, et al. Study on the spatial characteristics of land use in the Xiong’an New Area and the comparison of start-up area options[J]. Resources Science, 2017, 39(6):991-998.
[21] 孙颖, 易浪, 尹少华. 洞庭湖流域植被覆盖变化及其协同治理[J]. 经济地理, 2022, 42(4):190-201.
[21] Sun Y, Yi L, Yin S H. Vegetation cover changes in the Dongting Lake watershed and its synergistic management[J]. Economic Geography, 2022, 42(4):190-201.
[22] 曹永香, 毛东雷, 薛杰, 等. 绿洲-沙漠过渡带植被覆盖动态变化及其驱动因素——以新疆策勒为例[J]. 干旱区研究, 2022, 39(2):510-521.
[22] Cao Y X, Mao D L, Xue J, et al. Vegetation cover dynamics in the oasis-desert transition zone and its driving factors:A case of Cele,Xinjiang[J]. Arid Zone Research, 2022, 39(2):510-521.
[23] Sewnet A, Abebe G. Land use and land cover change and implication to watershed degradation by using GIS and remote sensing in the Koga watershed,North Western Ethiopia[J]. Earth science Informatics, 2018, 11(1): 99-108.
doi: 10.1007/s12145-017-0323-5 url: http://link.springer.com/10.1007/s12145-017-0323-5
[24] 吕晓, 史洋洋, 黄贤金, 等. 江苏省土地利用变化的图谱特征[J]. 应用生态学报, 2016, 27(4):1077-1084.
[24] Lyu X, Shi Y Y, Huang X J, et al. Mapping characteristics of land use change in Jiangsu Province[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1077-1084.
[25] 王金亮, 邵景安, 李阳兵. 近20 a三峡库区农林地利用变化图谱特征分析[J]. 自然资源学报, 2015, 30(2):235-247.
doi: 10.11849/zrzyxb.2015.02.007
[25] Wang J L, Shao J A, Li Y B. Characterization of agricultural and forest land use change mapping in the Three Gorges reservoir area in the last 20 a[J]. Journal of Natural Resources, 2015, 30(2):235-247.
[26] 杨彩云, 王世曦, 杨春艳, 等. 川藏铁路沿线植被覆盖度时空变化特征分析[J]. 干旱区资源与环境, 2021, 35(3):174-182.
[26] Yang C Y, Wang S X, Yang C Y, et al. Spatial and temporal variation characteristics of vegetation cover along the Sichuan-Tibet Railway[J]. Journal of Arid Land Resources and Environment, 2021, 35(3):174-182.
[27] Mishra R, Singh E, Kumar A. et al. Application of remote sensing for assessment of change in vegetation cover and the subsequent impact on climatic variables[J]. Environmental Science and Pollution Rellution Research, 2021, 28(31):41675-41687.
[28] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4):153-159.
[28] Li M M, Wu B F, Yan C Z, et al. Remote sensing estimation of vegetation cover in the upper reaches of Miyun Reservoir[J]. Resources Science, 2004, 26(4):153-159.
[29] 王文川, 薛沛, 刘素华. 1999-2018年河南省植被覆盖时空演变分析[J]. 水土保持研究, 2022, 29(2):243-248,264.
[29] Wang W C, Xue P, Liu S H. Analysis of spatial and temporal evolution of vegetation cover in Henan Province from 1999 to 2018[J]. Research of Soil and Water Conservation, 2022, 29(2):243-248,264.
[30] Gao S Q, Dong G T, Jiang X H, Nie T, et al. Quantification of natural and anthropogenic driving forces of vegetation changes in the Three-River headwater region during 1982 to 2015 based on geographical detector model[J]. Remote Sensing, 2021, 13(20): 4175.
doi: 10.3390/rs13204175 url: https://www.mdpi.com/2072-4292/13/20/4175
[31] 王正雄, 蒋勇军, 张远嘱, 等. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J]. 地理学报, 2019, 74(5):1025-1039.
doi: 10.11821/dlxb201905014
[31] Wang Z X, Jiang Y J, Zhang Y Z, et al. Analysis of spatial distribution and drivers of rock desertification in karst trough valleys based on GIS and geodetectors[J]. Acta Geographica Scinica, 2019, 74(5):1025-1039.
[32] 黄木易, 岳文泽, 方斌, 等. 1970—2015年大别山区生态服务价值尺度响应特征及地理探测机制[J]. 地理学报, 2019, 74(9):1904-1920.
doi: 10.11821/dlxb201909015
[32] Huang M Y, Yue W Z, Fang B, et al. Characteristics of ecological service value scale response and geodetection mechanism in Dabie Mountain area from 1970 to 2015[J]. Acta Geographica Scinica, 2019, 74(9):1904-1920.
[1] LIU Xiaomin, AMUGULENG , YANG Yaotian, LIU Yong. Ecological security evaluation of counties/banners in the Yellow River basin in Ordos[J]. Remote Sensing for Natural Resources, 2023, 35(4): 139-148.
[2] TIAN Liulan, LYU Siyu, WU Zhaopeng, WANG Juanjuan, SHI Xinpeng. Changes and spatial conflict measurement of land use in Urumqi City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 282-291.
[3] SUN Xiyong, LI Jingjing, ZHANG Ruijiang, WANG Shaoqiang, JI Xinyang, LI Guangwei. Paleodrainage network in the Xiong’an New Area: Remote sensing-based reconstruction and relationship with town planning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 132-139.
[4] YANG Lianwei, ZHAO Juan, ZHU Jiatian, LIU Lei, ZHANG Ping. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.
[5] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[6] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[7] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[8] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[9] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
[10] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[11] Jinxia LYU, Weiguo JIANG, Wenjie WANG, Yinghui LIU, Yue DENG, Xiaoya WANG. Wetland landscape evolution and its relation to human disturbance in Xiong’an New Area based on the moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 140-148.
[12] Zhaohua LIU, Chunyan ZHANG. Dynamic monitoring and driving factors analysis of urban expansion in Kaifeng[J]. Remote Sensing for Land & Resources, 2018, 30(4): 193-199.
[13] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[14] ZHANG Dengrong, XU Siying, XIE Bin, WU Wenyuan, LU Haifeng. Land use change of reclaimed mud flats in Jiaojiang-Taizhou Estuary in the past 40 years based on remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 101-106.
[15] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech