Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 91-100     DOI: 10.6046/zrzyyg.2024259
|
Landslide detection in complex environments based on dual feature fusion
FANG Liuyang1,2,3(), YANG Changhao1, SHU Dong1, YANG Xuekun2,3, CHEN Xingtong2,3, JIA Zhiwen1
1. Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China
2. Broadvision Engineering Consultants,Kunming 650200,China
3. Yunnan Key Laboratory of Digital Communications,Kunming 650000,China
Download: PDF(6315 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Landslide disasters are frequent and widespread in southwestern China. The accurate identification and mapping of landslides using remote sensing imagery are of great significance for disaster prevention and mitigation. However,in complex environments,traditional remote sensing detection methods are often prone to misidentification due to background noise in the imagery. This paper proposed a dual-fusion landslide detection network (DLDNet) to improve landslide detection accuracy under challenging conditions. First,based on existing landslide samples,landslide simulation was conducted in complex environments using data augmentation techniques. Second,the ConvNeXt was adopted as the feature extraction backbone of DLDNet to capture more complex landslide features. Then,an attention module enhanced with deformable convolution was introduced to better focus on landslide-related information. Finally,a dual-fusion feature pyramid network (DFPN) was designed to thoroughly integrate feature information across different scales and receptive fields. The experimental results show that the proposed DLDNet achieved average precision (AP) scores of 56.9% for bounding box detection and 52.5% for segmentation,10.4 and 10.7 percentage points higher than those of the baseline model (Mask R-CNN). Compared with other landslide detection models,the DLDNet demonstrates higher detection accuracy and a lower false alarm rate. The method,characterized by accurate landslide detection in complex environments,can support rapid landslide identification and emergency response.

Keywords remote sensing imagery      object detection      landslide extraction      deep learning      feature fusion     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liuyang FANG
Changhao YANG
Dong SHU
Xuekun YANG
Xingtong CHEN
Zhiwen JIA
Cite this article:   
Liuyang FANG,Changhao YANG,Dong SHU, et al. Landslide detection in complex environments based on dual feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(5): 91-100.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024259     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/91
Fig.1  DLDNet network structure
Fig.2  ConvNeXt network structure
Fig.3  Improved CBAM structure
Fig.4  DFPN structure
Fig.5  Study area location and elevation information
Fig.6  Simulated landslide samples in a complex environment
序号 双重
融合
CEM 边界框精度 分割精度
AP AP50 AP75 AP AP50 AP75
实验1 × × 46.5 83.2 52.3 41.8 81.4 42.5
实验2 × 48.2 86.2 52.9 42.8 81.7 43.9
实验3 48.5 86.8 54.3 43.2 81.8 44.3
Tab.1  Ablation experiments results of DFPN (%)
序号 ConvNeXt DFPN CBAM DCN 边界框精度 分割精度
AP AP50 AP75 AP AP50 AP75
实验1 × × × × 46.5 83.2 52.3 41.8 81.4 42.5
实验4 × × × 54.6 90.2 62.8 49.7 89.4 53.0
实验5 × × 55.8 90.7 64.9 50.5 90.1 54.5
实验6 × 56.2 91.0 65.1 51.3 90.4 55.1
实验7 56.9 91.9 65.2 52.5 91.1 56.8
Tab.2  Ablation experiments results of DLDNet (%)
序号 真实值 实验1 实验4 实验5 实验6 实验7
a
b
c
d
e
Tab.3  Landslide detection results of DLDNet ablation experiment
序号 方法 主干网络 边界框精度 分割精度
AP AP50 AP75 AP AP50 AP75
实验7 DLDNet ConvNeXt-T+改进CBAM+DFPN 56.9 91.9 65.2 52.5 91.1 56.8
实验8 Faster R-CNN ResNet101+FPN 46.8 85.8 49.1
实验9 Dynamic R-CNN ResNet101+FPN 50.3 88.6 55.5
实验10 Cascade Mask R-CNN ResNet101+FPN 50.0 86.5 55.1 44.5 83.0 45.2
实验11 RTMDet CSPNeXt-T+PAFPN 56.8 91.8 64.0 51.2 89.0 54.6
Tab.4  Experimental results of different models (%)
序号 真实值 实验7 实验8 实验9 实验10 实验11
a
b
c
d
Tab.5  Landslide detection results of different models
[1] 铁永波, 葛华, 高延超, 等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质, 2022, 42(4):653-665.
[1] Tie Y B, Ge H, Gao Y C, et al. The research progress and prospect of geological hazards in Southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4):653-665.
[2] 蔡建澳, 明冬萍, 赵文祎, 等. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1):128-136.doi:10.6046/zrzyyg.2023313.
[2] Cai J A, Ming D P, Zhao W Y, et al. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1):128-136.doi:10.6046/zrzyyg.2023313.
[3] 晏同珍, 杨顺安, 方云. 滑坡学[M]. 武汉: 中国地质大学出版社, 2000.
[3] Yan T Z, Yang S A, Fang Y. Landslidologies[M]. Wuhan: China University of Geosciences Press, 2000.
[4] Fan J R, Zhang X Y, Su F H, et al. Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data[J]. Journal of Mountain Science, 2017, 14(9):1677-1688.
[5] 李强, 张景发, 罗毅, 等. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-795.
[5] Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-795.
[6] Sato H P, Hasegawa H, Fujiwara S, et al. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery[J]. Landslides, 2007, 4(2):113-122.
[7] Lu P, Qin Y, Li Z, et al. Landslide mapping from multi-sensor data through improved change detection-based Markov random field[J]. Remote Sensing of Environment, 2019, 231:111235.
[8] 李晨辉, 郝利娜, 许强, 等. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
[8] Li C H, Hao L N, Xu Q, et al. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
[9] 李麒崙, 张万昌, 易亚宁. 地震滑坡信息提取方法研究——以2017年九寨沟地震为例[J]. 中国科学院大学学报, 2020, 37(1):93-102.
doi: 10.7523/j.issn.2095-6134.2020.01.011
[9] Li Q L, Zhang W C, Yi Y N. An information extraction method of earthquake-induced landslide:A case study of the Jiuzhaigou earthquake in 2017[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1):93-102.
[10] 张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
[10] Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
[11] Liang R, Dai K, Shi X, et al. Automated mapping of ms 7.0 Jiu-zhaigou earthquake (China) post-disaster landslides based on high-resolution UAV imagery[J]. Remote Sensing, 2021, 13(7):1330.
[12] 郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法——以新铺滑坡为例[J]. 测绘学报, 2022, 51(10):2171-2182.
doi: 10.11947/j.AGCS.2022.20220298
[12] Guo A Q, Hu J, Zheng W J, et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR:A case study of Xinpu landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2171-2182.
[13] 姜万冬, 席江波, 李振洪, 等. 模拟困难样本的Mask R-CNN滑坡分割识别[J]. 武汉大学学报(信息科学版), 2023, 48(12):1931-1942.
[13] Jiang W D, Xi J B, Li Z H, et al. Landslide detection and segmentation using Mask R-CNN with simulated hard samples[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12):1931-1942.
[14] 白石, 唐攀攀, 苗朝, 等. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[14] Bai S, Tang P P, Miao Z, et al. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model:A case study of Wenchuan,Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[15] Cortes C, Vapnik V. Support-vector networks[J]. Machine Lear-ning, 1995, 20(3):273-297.
[16] Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32.
[17] Khelifi L, Mignotte M. Deep learning for change detection in remote sensing images:Comprehensive review and meta-analysis[J]. IEEE Access, 2020, 8:126385-126400.
[18] 刘佳, 伍宇明, 高星, 等. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7):1275-1285.
doi: 10.12082/dqxxkx.2022.210704
[18] Liu J, Wu Y M, Gao X, et al. Image recognition of co-seismic landslide based on GEE and U-net neural network[J]. Journal of Geo-Information Science, 2022, 24(7):1275-1285.
[19] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[19] Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[20] Yu Z, Chang R, Chen Z. Automatic detection method for loess landslides based on GEE and an improved YOLOX algorithm[J]. Remote Sensing, 2022, 14(18):4599.
[21] Yang R, Zhang F, Xia J, et al. Landslide extraction using mask R-CNN with background-enhancement method[J]. Remote Sensing, 2022, 14(9):2206.
[22] 唐小川, 涂子涵, 任绪清, 等. 一种识别植被覆盖滑坡的多模态深度神经网络模型[J]. 武汉大学学报(信息科学版), 2024, 49(9):1566-1573.
[22] Tang X C, Tu Z H, Ren X Q, et al. A multi-modal deep neural network model for forested landslide detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9):1566-1573.
[23] 蒋伟杰, 张春菊, 徐兵, 等. AED-Net:滑坡灾害遥感影像语义分割模型[J]. 地球信息科学学报, 2023, 25(10):2012-2025.
doi: 10.12082/dqxxkx.2023.230171
[23] Jiang W J, Zhang C J, Xu B, et al. AED-net:Semantic segmentation model for landslide recognition from remote sensing images[J]. Journal of Geo-Information Science, 2023, 25(10):2012-2025.
[24] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
[25] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:2980-2988.
[26] Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing,2018:3-19.
[27] Liu Z, Mao H, Wu C Y, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:11966-11976.
[28] 付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20):150-156.
doi: 10.3778/j.issn.1002-8331.2101-0369
[28] Fu G D, Huang J, Yang T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20):150-156.
doi: 10.3778/j.issn.1002-8331.2101-0369
[29] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:936-944.
[30] Cao J, Chen Q, Guo J, et al. Attention-guided context feature pyramid network for object detection[J/OL]. arXiv, 2020:2005.11475. https://arxiv.org/abs/2005.11475v1.
url: https://arxiv.org/abs/2005.11475v1
[31] Yun S, Han D, Chun S, et al. CutMix:Regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019:6022-6031.
[32] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J/OL]. arXiv, 2020:2004.10934. https://arxiv.org/abs/2004.10934v1.
url: https://arxiv.org/abs/2004.10934v1.
[1] LI Yinglong, DENG Yupeng, KONG Yunlong, CHEN Jingbo, MENG Yu, LIU Diyou. End-to-end land cover classification based on panchromatic-multispectral dual-stream convolutional network[J]. Remote Sensing for Natural Resources, 2025, 37(5): 152-161.
[2] GONG Shaojun, CHEN Chao, FAN Jing. A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 53-61.
[3] WU Zhijun, CONG Ming, XU Miaozhong, HAN Ling, CUI Jianjun, ZHAO Chaoying, XI Jiangbo, YANG Chengsheng, DING Mingtao, REN Chaofeng, GU Junkai, PENG Xiaodong, TAO Yiting. Self-learning segmentation of high-resolution remote sensing images based on visual dual-drive cognition[J]. Remote Sensing for Natural Resources, 2025, 37(5): 73-90.
[4] ZHU Juanjuan, HUANG Liang, ZHU Shasha. SD-BASNet:a building extraction network for high-spatial-resolution remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 122-130.
[5] XU Ziyao, YANG Wu, SHI Xiaolong. Small target detection in remote sensing images based on lightweight YOLOv7-tiny[J]. Remote Sensing for Natural Resources, 2025, 37(4): 1-11.
[6] LIU Haoran, YAN Tianxiao, ZHU Yueqin, WANG Yanping, CHEN Zuyi, YANG Zhaoying, ZHU Haomeng. Landslide identification based on an improved YOLOv7 model: A case study of the Baige area[J]. Remote Sensing for Natural Resources, 2025, 37(4): 48-57.
[7] CEHN Lanlan, FAN Yongchao, XIAO Haiping, WAN Junhui, CHEN Lei. Predicting surface subsidence in large-scale mining areas based on time-series InSAR and the IRIME-LSTM model[J]. Remote Sensing for Natural Resources, 2025, 37(3): 245-252.
[8] ZOU Haijing, ZOU Bin, WANG Yulong, ZHANG Bo, ZOU Lunwen. Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy[J]. Remote Sensing for Natural Resources, 2025, 37(3): 1-8.
[9] GUO Wei, LI Yu, JIN Haibo. Detecting ships from SAR images based on high-dimensional contextual attention and dual receptive field enhancement[J]. Remote Sensing for Natural Resources, 2025, 37(3): 104-112.
[10] CHEN Min, PENG Shuan, WANG Tao, WU Xuefang, LIU Runpu, CHEN Yushuo, FANG Yanru, YANG Pingjian. A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland[J]. Remote Sensing for Natural Resources, 2025, 37(3): 133-141.
[11] HE Xiaojun, LUO Jie. Semantic segmentation of high-resolution remote sensing images based on context- and class-aware feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(2): 1-10.
[12] ZHENG Zongsheng, GAO Meng, ZHOU Wenhuan, WANG Zhenghan, HUO Zhijun, ZHANG Yuewei. Densely connected multiscale semantic segmentation for land cover based on the iterative optimization strategy for samples[J]. Remote Sensing for Natural Resources, 2025, 37(2): 11-18.
[13] PANG Min. An intelligent platform for extracting patches from multisource domestic satellite images and its application[J]. Remote Sensing for Natural Resources, 2025, 37(2): 148-154.
[14] QU Haicheng, WANG Ying, LIU Lamei, HAO Ming. Information extraction of roads from remote sensing images using CNN combined with Transformer[J]. Remote Sensing for Natural Resources, 2025, 37(1): 38-45.
[15] HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech