|
|
|
Abstract Landslide disasters are frequent and widespread in southwestern China. The accurate identification and mapping of landslides using remote sensing imagery are of great significance for disaster prevention and mitigation. However,in complex environments,traditional remote sensing detection methods are often prone to misidentification due to background noise in the imagery. This paper proposed a dual-fusion landslide detection network (DLDNet) to improve landslide detection accuracy under challenging conditions. First,based on existing landslide samples,landslide simulation was conducted in complex environments using data augmentation techniques. Second,the ConvNeXt was adopted as the feature extraction backbone of DLDNet to capture more complex landslide features. Then,an attention module enhanced with deformable convolution was introduced to better focus on landslide-related information. Finally,a dual-fusion feature pyramid network (DFPN) was designed to thoroughly integrate feature information across different scales and receptive fields. The experimental results show that the proposed DLDNet achieved average precision (AP) scores of 56.9% for bounding box detection and 52.5% for segmentation,10.4 and 10.7 percentage points higher than those of the baseline model (Mask R-CNN). Compared with other landslide detection models,the DLDNet demonstrates higher detection accuracy and a lower false alarm rate. The method,characterized by accurate landslide detection in complex environments,can support rapid landslide identification and emergency response.
|
| Keywords
remote sensing imagery
object detection
landslide extraction
deep learning
feature fusion
|
|
|
|
Issue Date: 28 October 2025
|
|
|
| [1] |
铁永波, 葛华, 高延超, 等. 二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质, 2022, 42(4):653-665.
|
| [1] |
Tie Y B, Ge H, Gao Y C, et al. The research progress and prospect of geological hazards in Southwest China since the 20th Century[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(4):653-665.
|
| [2] |
蔡建澳, 明冬萍, 赵文祎, 等. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1):128-136.doi:10.6046/zrzyyg.2023313.
|
| [2] |
Cai J A, Ming D P, Zhao W Y, et al. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1):128-136.doi:10.6046/zrzyyg.2023313.
|
| [3] |
晏同珍, 杨顺安, 方云. 滑坡学[M]. 武汉: 中国地质大学出版社, 2000.
|
| [3] |
Yan T Z, Yang S A, Fang Y. Landslidologies[M]. Wuhan: China University of Geosciences Press, 2000.
|
| [4] |
Fan J R, Zhang X Y, Su F H, et al. Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data[J]. Journal of Mountain Science, 2017, 14(9):1677-1688.
|
| [5] |
李强, 张景发, 罗毅, 等. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-795.
|
| [5] |
Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-795.
|
| [6] |
Sato H P, Hasegawa H, Fujiwara S, et al. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery[J]. Landslides, 2007, 4(2):113-122.
|
| [7] |
Lu P, Qin Y, Li Z, et al. Landslide mapping from multi-sensor data through improved change detection-based Markov random field[J]. Remote Sensing of Environment, 2019, 231:111235.
|
| [8] |
李晨辉, 郝利娜, 许强, 等. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
|
| [8] |
Li C H, Hao L N, Xu Q, et al. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
|
| [9] |
李麒崙, 张万昌, 易亚宁. 地震滑坡信息提取方法研究——以2017年九寨沟地震为例[J]. 中国科学院大学学报, 2020, 37(1):93-102.
doi: 10.7523/j.issn.2095-6134.2020.01.011
|
| [9] |
Li Q L, Zhang W C, Yi Y N. An information extraction method of earthquake-induced landslide:A case study of the Jiuzhaigou earthquake in 2017[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1):93-102.
|
| [10] |
张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
|
| [10] |
Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
|
| [11] |
Liang R, Dai K, Shi X, et al. Automated mapping of ms 7.0 Jiu-zhaigou earthquake (China) post-disaster landslides based on high-resolution UAV imagery[J]. Remote Sensing, 2021, 13(7):1330.
|
| [12] |
郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法——以新铺滑坡为例[J]. 测绘学报, 2022, 51(10):2171-2182.
doi: 10.11947/j.AGCS.2022.20220298
|
| [12] |
Guo A Q, Hu J, Zheng W J, et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR:A case study of Xinpu landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2171-2182.
|
| [13] |
姜万冬, 席江波, 李振洪, 等. 模拟困难样本的Mask R-CNN滑坡分割识别[J]. 武汉大学学报(信息科学版), 2023, 48(12):1931-1942.
|
| [13] |
Jiang W D, Xi J B, Li Z H, et al. Landslide detection and segmentation using Mask R-CNN with simulated hard samples[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12):1931-1942.
|
| [14] |
白石, 唐攀攀, 苗朝, 等. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
|
| [14] |
Bai S, Tang P P, Miao Z, et al. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model:A case study of Wenchuan,Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
|
| [15] |
Cortes C, Vapnik V. Support-vector networks[J]. Machine Lear-ning, 1995, 20(3):273-297.
|
| [16] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45:5-32.
|
| [17] |
Khelifi L, Mignotte M. Deep learning for change detection in remote sensing images:Comprehensive review and meta-analysis[J]. IEEE Access, 2020, 8:126385-126400.
|
| [18] |
刘佳, 伍宇明, 高星, 等. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7):1275-1285.
doi: 10.12082/dqxxkx.2022.210704
|
| [18] |
Liu J, Wu Y M, Gao X, et al. Image recognition of co-seismic landslide based on GEE and U-net neural network[J]. Journal of Geo-Information Science, 2022, 24(7):1275-1285.
|
| [19] |
杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
|
| [19] |
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
|
| [20] |
Yu Z, Chang R, Chen Z. Automatic detection method for loess landslides based on GEE and an improved YOLOX algorithm[J]. Remote Sensing, 2022, 14(18):4599.
|
| [21] |
Yang R, Zhang F, Xia J, et al. Landslide extraction using mask R-CNN with background-enhancement method[J]. Remote Sensing, 2022, 14(9):2206.
|
| [22] |
唐小川, 涂子涵, 任绪清, 等. 一种识别植被覆盖滑坡的多模态深度神经网络模型[J]. 武汉大学学报(信息科学版), 2024, 49(9):1566-1573.
|
| [22] |
Tang X C, Tu Z H, Ren X Q, et al. A multi-modal deep neural network model for forested landslide detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9):1566-1573.
|
| [23] |
蒋伟杰, 张春菊, 徐兵, 等. AED-Net:滑坡灾害遥感影像语义分割模型[J]. 地球信息科学学报, 2023, 25(10):2012-2025.
doi: 10.12082/dqxxkx.2023.230171
|
| [23] |
Jiang W J, Zhang C J, Xu B, et al. AED-net:Semantic segmentation model for landslide recognition from remote sensing images[J]. Journal of Geo-Information Science, 2023, 25(10):2012-2025.
|
| [24] |
Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
|
| [25] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017:2980-2988.
|
| [26] |
Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing,2018:3-19.
|
| [27] |
Liu Z, Mao H, Wu C Y, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:11966-11976.
|
| [28] |
付国栋, 黄进, 杨涛, 等. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20):150-156.
doi: 10.3778/j.issn.1002-8331.2101-0369
|
| [28] |
Fu G D, Huang J, Yang T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20):150-156.
doi: 10.3778/j.issn.1002-8331.2101-0369
|
| [29] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:936-944.
|
| [30] |
Cao J, Chen Q, Guo J, et al. Attention-guided context feature pyramid network for object detection[J/OL]. arXiv, 2020:2005.11475. https://arxiv.org/abs/2005.11475v1.
url: https://arxiv.org/abs/2005.11475v1
|
| [31] |
Yun S, Han D, Chun S, et al. CutMix:Regularization strategy to train strong classifiers with localizable features[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019:6022-6031.
|
| [32] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J/OL]. arXiv, 2020:2004.10934. https://arxiv.org/abs/2004.10934v1.
url: https://arxiv.org/abs/2004.10934v1.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|