Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 32-43     DOI: 10.6046/zrzyyg.2025043
|
GIS-based analysis of dynamic changes and driving forces for natural lakes in Anhui Province
HE Weirong1,2(), HUO Runbin1,2, LI Donghui1, ZHANG Fengshan1, WANG Xinfeng1,2()
1. Langfang Integrated Natural Resources Survey Center,China Geological Survey,Langfang 065000,China
2. Technical Innovation Base for Natural Resources Monitoring in the Lower Reaches of Yongding River Area,ChinaGeological Society,Langfang 065000,China
Download: PDF(9234 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Natural lakes,as a precious natural resource in Anhui Province,are defined as large water bodies formed by natural water accumulation in surface depressions. Different from artificial water bodies such as reservoirs and ponds,they are formed and evolved under the control of geological,climatic,and hydrological conditions. Moreover,characterized by relatively stable forms and ecosystems,they play important roles in regional ecological balance,economic development,and socio-cultural activities. Therefore,investigating their spatiotemporal changes and driving forces is highly significant for the protection of natural lakes in Anhui Province. This study collected data from the Thematic Mapper (TM) onboard the Landsat-5 satellite and the Operational Land Imager onboard the Landsat-8 satellite. Then,the natural lakes in Anhui Province were extracted from these data using a human-computer interaction method. This study investigated spatiotemporal changes of the lakes using the dynamic degree and land use transfer matrix. The driving factors of the changes were examined from two aspects:natural factors and social factors. From 2002 to 2022,the natural lakes in Anhui Province showed a phased change in both area and number,characterized by an initial decrease followed by an increase. In terms of lake area,the total area of the lakes decreased by 366.5 km2. Specifically,from 2002 to 2012,the lake area decreased rapidly,reaching its lowest value of 2850.12 km2 in 2012. From 2012 to 2022,the area gradually recovered,rebounding to 2960.97 km2 in 2022. In terms of the lake number,there was a cumulative reduction of four lakes over the period. Specifically,the period from 2002 to 2007 saw a rapid decline,with an average annual decrease of 1.4 lakes. From 2007 to 2022,the number gradually rebounded,with an average annual increase of 0.2 lakes,reaching a total of 105 lakes in 2022. The changes in land use around typical lakes predominantly involved the conversion to arable land and other water bodies. In Anhui Province,the natural lake areas were influenced by both natural and social factors. The decreased runoff of the Huaihe River resulted in a decrease in inflow into the lakes,which serves as a key natural factor contributing to the reduction of the natural lake area in Anhui Province. Human activities and land use changes around the lakes are identified as important social factors for the reduction of the lake area.

Keywords Anhui Province      natural lake      remote sensing      dynamic change      driving force analysis     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weirong HE
Runbin HUO
Donghui LI
Fengshan ZHANG
Xinfeng WANG
Cite this article:   
Weirong HE,Runbin HUO,Donghui LI, et al. GIS-based analysis of dynamic changes and driving forces for natural lakes in Anhui Province[J]. Remote Sensing for Natural Resources, 2025, 37(5): 32-43.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2025043     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/32
Fig.1  Distribution of major lades in Anhui Province
Fig.2  Changes in the area and number of lakes in Anhui Province
Fig.3  Changes in the area and number of lakes of different grades in Anhui Province
Fig.4  Changes in the area of typical lakes in Anhui Province
Fig.5  Changes in temperature,precipitation and runoff in the Yangtze River Basin from 2002 to 2022
Fig.6  Changes in temperature,precipitation and runoff in the Huaihe River Basin from 2002 to 2022
Fig.7  Changes in the area of Wabu Lake before and after heavy rainfall
Fig.8  Changes in the area of Shengjin Lake before and after drought
湖泊
名称
变化情况 2002—
2022年
2002—
2007年
2007—
2012年
2012—
2017年
2017—
2022年


耕地→湖泊 0.85 6.47 0.05 1.60 2.16
湖泊→耕地 25.67 0.77 30.76 0.33 1.01
其他水体→湖泊 0.31 0.86 0.04 4.47 2.34
湖泊→其他水体 7.74 0.00 16.06 0.41 0.79
建设用地→湖泊 0.14 0.51 0.02 0.31 0.43
湖泊→建设用地 2.10 0.01 3.17 0.04 0.12


耕地→湖泊 1.71 0.42 0.89 7.21 6.98
湖泊→耕地 5.55 18.13 0.06 0.14 0.29
林地→湖泊 0.11 0.10 0.06 2.47 0.23
湖泊→林地 0.12 0.42 0.01 0.03 0.04
其他水体→湖泊 0.32 0.07 16.96 5.91 3.70
湖泊→其他水体 2.37 30.90 0.11 0.46 0.35
建设用地→湖泊 0.08 0.02 0.07 0.10 0.11
湖泊→建设用地 0.16 0.32 - 0.02 0.04
Tab.1  Changes of land use types of typical lakes in 2002 to 2022 (km2
Fig.9  Land use change map of Wabu Lake
Fig.10  Diagram of land use change in Wabu Lake
Fig.11  Land use change map of Shengjin Lake
Fig.12  Diagram of land use change in Shengjin Lake
因子 相关系数
降雨量 0.321
气温 0.528
长江径流量 0.291
淮河径流量 0.922*①
人口 -0.494
GDP -0.566
耕地面积 -0.458
Tab.2  Correlation coefficient between lake area and driving factors in Anhui Province
[1] 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6):799-810.
[1] Yang G S, Ma R H, Zhang L, et al. Lake status,major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6):799-810.
[2] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
[2] Wang S M, Dou H S. China lake records[M]. Beijing: Science Press, 1998.
[3] 马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、面积与空间分布[J]. 中国科学:地球科学, 2011, 41(3):394-401.
[3] Ma R H, Yang G S, Duan H T, et al. Number,area and spatial distribution of lakes in China[J]. Scientia Sinica (Terrae), 2011, 41(3):394-401.
[4] 张闻松, 宋春桥. 中国湖泊分布与变化:全国尺度遥感监测研究进展与新编目[J]. 遥感学报, 2022, 26(1):92-103.
[4] Zhang W S, Song C Q. Spatial distribution and dynamics of lakes in China:Progress in remote sensing monitoring at national scale and new inventory of the maximum lake extent and change trajectory[J]. National Remote Sensing Bulletin, 2022, 26(1):92-103.
[5] 刘吉峰, 吴怀河, 宋伟. 中国湖泊水资源现状与演变分析[J]. 黄河水利职业技术学院学报, 2008, 20(1):1-4.
[5] Liu J F, Wu H H, Song W. Existing state and evolvement analysis of the Chinese Lake water resources[J]. Journal of Yellow River Conservancy Technical Institute, 2008, 20(1):1-4.
[6] 祁家禹. 安徽省水资源现状及保护利用对策[J]. 现代农业科技, 2011(21):273.
[6] Qi J Y. Present situation of water resources in Anhui Province and its protection and utilization countermeasures[J]. Modern Agricultural Science and Technology, 2011(21):273.
[7] 宋昊明, 汪振宁, 顾雯. 安徽省淮河流域湖泊保护探讨[J]. 水资源开发与管理, 2021, 7(7):41-43,32.
[7] Song H M, Wang Z N, Gu W. Discussion on the lake protection planning in Huaihe River basin of Anhui Province[J]. Water Resources Development and Management, 2021, 7(7):41-43,32.
[8] Yao F, Livneh B, Rajagopalan B, et al. Satellites reveal widespread decline in global lake water storage[J]. Science, 2023, 380(6646):743-749.
doi: 10.1126/science.abo2812 pmid: 37200445
[9] Xu N, Lu H, Li W, et al. Natural lakes dominate global water sto-rage variability[J]. Science Bulletin, 2024, 69(8):1016-1019.
[10] Jane S F, Hansen G J A, Kraemer B M, et al. Widespread deoxygenation of temperate lakes[J]. Nature, 2021, 594(7861):66-70.
[11] Wang X, Shi K, Qin B, et al. Disproportionate impact of atmosphe-ric heat events on lake surface water temperature increases[J]. Nature Climate Change, 2024, 14(11):1172-1177.
[12] 白洁, 陈曦, 李均力, 等. 1975—2007年中亚干旱区内陆湖泊面积变化遥感分析[J]. 湖泊科学, 2011, 23(1):80-88.
[12] Bai J, Chen X, Li J L, et al. Changes of inland lake area in arid Central Asia during 1975—2007:A remote-sensing analysis[J]. Journal of Lake Sciences, 2011, 23(1):80-88.
[13] 王云惠. 基于卫星遥感影像的近30年来中国主要湖泊面积变化研究[D]. 昆明: 云南师范大学, 2022.
[13] Wang Y H. Study on the area change of major lakes in China based on satellite remote sensing images in recent 30 years[D]. Kunming: Yunnan Normal University, 2022.
[14] Wu J, Ke C Q, Cai Y, et al. Monitoring multi-temporal changes of lakes on the Tibetan Plateau using multi-source remote sensing data from 1992 to 2019:A case study of lake zhari namco[J]. Journal of Earth Science, 2024, 35(5):1679-1691.
[15] 段俊斌, 彭鹏, 杨道堃. 基于RS的安庆市沿江湿地50多年来变迁及驱动力分析[J]. 安徽地质, 2021, 31(4):352-357.
[15] Duan J B, Peng P, Yang D K. Remote sensing image-based analysis on the change of wetland of Anqing city along the Yangtze River and the driving force over the past 50 years[J]. Geology of Anhui, 2021, 31(4):352-357.
[16] 王春霞. 基于遥感影像的云贵高原湖泊提取及动态变化分析[D]. 贵阳: 贵州大学, 2022.
[16] Wang C X. Extraction and dynamic change analysis of lakes in Yunnan-Guizhou Plateau based on remote sensing images[D]. Guiyang: Guizhou University, 2022.
[17] 李宁, 刘吉平, 王宗明. 2000—2010年东北地区湖泊动态变化及驱动力分析[J]. 湖泊科学, 2014, 26(4):545-551.
[17] Li N, Liu J P, Wang Z M. Dynamics and driving force of lake changes in Northeast China during 2000—2010[J]. Journal of Lake Sciences, 2014, 26(4):545-551.
[18] 王冬梅, 陈丽, 梁文广, 等. 太湖流域典型湖泊演变特性及驱动力分析[J]. 中国农村水利水电, 2023(6):107-114.
doi: 10.12396/znsd.221552
[18] Wang D M, Chen L, Liang W G, et al. An analysis of the evolution characteristics and driving factors of typical lakes in the Taihu basin[J]. China Rural Water and Hydropower, 2023(6):107-114.
[19] Fu M, Zheng Y, Qian C, et al. Spatiotemporal evolution and driving mechanism of Dongting Lake based on 2005—2020 multi-source remote sensing data[J]. Ecological Informatics, 2024, 83:102822.
[20] 周迎秋. 基于遥感的巢湖流域环境变化研究[D]. 芜湖: 安徽师范大学, 2005.
[20] Zhou Y Q. Study on the environment change of Chaohu drainage area based on remote sensing[D]. Wuhu: Anhui Normal University, 2005.
[21] 张毅, 孔祥德, 邓宏兵, 等. 近百年湖北省湖泊演变特征研究[J]. 湿地科学, 2010, 8(1):15-20.
[21] Zhang Y, Kong X T, Deng H B, et al. Change characteristic of lakes in Hubei Province in the past 100 years[J]. Wetland Science, 2010, 8(1):15-20.
[22] Bao N, Song W, Ma J, et al. Multi-source remote sensing analysis of Yilong Lake’s surface water dynamics (1965—2022):A temporal and spatial investigation[J]. Water, 2024, 16(14):2058.
[23] 王威, 隋兵, 林南, 等. 基于Landsat遥感数据的洞庭湖面积变化研究[J]. 气象科技进展, 2020, 10(3):128-132.
[23] Wang W, Sui B, Lin N, et al. Study on area changes of the Dongting Lake based on remote sensing data[J]. Advances in Meteorological Science and Technology, 2020, 10(3):128-132.
[24] 徐娜, 贾建华, 罗菊花, 等. 江苏省湖泊遥感监测及10年动态变化分析[J]. 长江流域资源与环境, 2014, 23(4):468-474.
[24] Xu N, Jia J H, Luo J H, et al. Monitoring distribution and analyzing decade dynamic change of lakes in Jiangsu Province using remote sensing[J]. Resources and Environment in the Yangtze Basin, 2014, 23(4):468-474.
[25] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. Internatio-nal Journal of Remote Sensing, 1996, 17(7):1425-1432.
[26] 赵世雄. 淮河入洪泽湖段岸滩及湖区围垦演变影响研究[D]. 天津大学, 2020.
[26] Zhao S X. Study on the influence of shoal and shoreline evolution of Huaihe River into Hongze Lake and the lake district reclamation evolution[D]. Tianjin University, 2020.
[27] 王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1):81-87.
[27] Wang X L, Bao Y H. Discussion on research methods of land use dynamic change[J]. Progress in Geography, 1999, 18(1):81-87.
[28] 朱会义, 李秀彬. 关于区域土地利用变化指数模型方法的讨论[J]. 地理学报, 2003, 58(5):643-650.
[28] Zhu H Y, Li X B. Discussion on the index method of regional land use change[J]. Acta Geographica Sinica, 2003, 58(5):643-650.
doi: 10.11821/xb200305001
[29] 李荣华, 姜英, 吕炜, 等. 变量间的相关系数及其SPSS中计算[J]. 教育现代化, 2020, 7(21):107-108.
[29] Li R H, Jiang Y, Lyu W, et al. Correlation coefficient between varia-bles and its calculation in SPSS[J]. Education Modernization, 2020, 7(21):107-108.
[30] 方金琪. 我国历史时期的湖泊围垦与湖泊退缩[J]. 地理环境研究, 1989, 1(1):71-78.
[30] Fang J Q. Relationships between lake evolution and land reclamation in history of China[J]. Yunnan Geographic Environment Research, 1989, 1(1):71-78.
[31] 姜鲁光, 封志明, 于秀波, 等. 退田还湖后鄱阳湖区洪水调蓄功能的多情景模拟[J]. 资源科学, 2010, 32(5):817-823.
[31] Jiang L G, Feng Z M, Yu X B, et al. Scenario analysis on the flood regulation service of the Poyang Lake region[J]. Resources Scie-nce, 2010, 32(5):817-823.
[32] 梁益同, 夏智宏, 文雄飞, 等. 基于卫星遥感的40年洪湖水面变化及驱动力分析[J]. 气象科技进展, 2018, 8(5):85-90.
[32] Liang Y T, Xia Z H, Wen X F, et al. Driving forces of changes to water surface area for Honghu Lake over 40 years based on satellite remote sensing data[J]. Advances in Meteorological Science and Technology, 2018, 8(5):85-90.
[33] 蒋卫国, 李京, 王文杰, 等. 基于遥感与GIS的辽河三角洲湿地资源变化及驱动力分析[J]. 国土资源遥感, 2005, 17(3):62-65,101.doi:10.6046/gtzyyg.2005.03.15.
[33] Jiang W G, Li J, Wang W J, et al. An analysis of changes and driving forces of wetland using RS and GIS in Liaohe river delta[J]. Remote Sensing for Land and Resources, 2005, 17(3):62-65,101.doi:10.6046/gtzyyg.2005.03.15.
[34] 何思聪, 董恒, 张城芳. 1994—2015年武汉城市圈湖泊演变规律及驱动力分析[J]. 生态与农村环境学报, 2020, 36(10):1260-1267.
[34] He S C, Dong H, Zhang C F. Analysis on dynamic changes and driving force of lake area in Wuhan City circle from 1994 to 2015[J]. Journal of Ecology and Rural Environment, 2020, 36(10):1260-1267.
[35] 王国平, 张玉霞. 水利工程对向海湿地水文与生态的影响[J]. 资源科学, 2002, 24(3):26-30.
[35] Wang G P, Zhang Y X. Impacts of reservoir project on hydrological and ecological environment of Xianghai wetlands[J]. Resources Science, 2002, 24(3):26-30.
[1] WANG Xingwei, TANG Kangqi, LIU Yan, LIU Huan. Change detection network for dual-temporal optical remote sensing images integrating fast Fourier transform and efficient multi-head self-attention[J]. Remote Sensing for Natural Resources, 2025, 37(5): 113-121.
[2] ZHU Juanjuan, HUANG Liang, ZHU Shasha. SD-BASNet:a building extraction network for high-spatial-resolution remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 122-130.
[3] ZHAO Ping, CHANG Jie, ZHOU Jun, WU Song, SHEN Ao, CHU Boce. Comparative analysis of MuSyQ LAI,MODIS LAI,and GLASS LAI exemplified by Anhui Province[J]. Remote Sensing for Natural Resources, 2025, 37(5): 183-194.
[4] HE Haiyang, LI Shijie, QIN Haoyang, LIU Xiaoyu, WANG Siqi, SUN Xu. Altered mineral mapping and characteristic analysis in Qianhongquan Area,Beishan,Gansu Province,based on hyperspectral data from the ZY-1 02D satellite[J]. Remote Sensing for Natural Resources, 2025, 37(5): 195-205.
[5] LANG Yunfan, LI Yimin, LI Yuanting, LIU Miao, BAI Kebing. Exploring spatiotemporal characteristics of economic development in Yunnan and Myanmar based on nighttime light remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(5): 233-242.
[6] ZOU Juan, YU Shuchen, HE Qiuhua, XU Zhibin, YIN Xianghong, ZOU Cong. Spatiotemporal evolution of the Zhuzikou delta in Dongting Lake from 1933 to 2024[J]. Remote Sensing for Natural Resources, 2025, 37(5): 24-31.
[7] ZHANG Ping, PANG Yong, CHEN Qingsong, YANG Kun, ZOU Zujian, HOU Yunhua, WANG Caiqiong, FENG Siqi. Dynamic monitoring and driving factor analysis for eco-environmental quality in alpine gorges of northwest Yunnan based on a remote sensing ecological index model[J]. Remote Sensing for Natural Resources, 2025, 37(5): 243-253.
[8] YANG Zhen, YANG Minglong, LI Guozhu, XIA Yonghua, YU Ting, YAN Zhengfei, LI Wantao. Relationship between modified water stress-based NPP inversion and soil moisture in typical plateau basins[J]. Remote Sensing for Natural Resources, 2025, 37(5): 267-277.
[9] GONG Shaojun, CHEN Chao, FAN Jing. A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 53-61.
[10] WU Zhijun, CONG Ming, XU Miaozhong, HAN Ling, CUI Jianjun, ZHAO Chaoying, XI Jiangbo, YANG Chengsheng, DING Mingtao, REN Chaofeng, GU Junkai, PENG Xiaodong, TAO Yiting. Self-learning segmentation of high-resolution remote sensing images based on visual dual-drive cognition[J]. Remote Sensing for Natural Resources, 2025, 37(5): 73-90.
[11] FANG Liuyang, YANG Changhao, SHU Dong, YANG Xuekun, CHEN Xingtong, JIA Zhiwen. Landslide detection in complex environments based on dual feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(5): 91-100.
[12] XU Ziyao, YANG Wu, SHI Xiaolong. Small target detection in remote sensing images based on lightweight YOLOv7-tiny[J]. Remote Sensing for Natural Resources, 2025, 37(4): 1-11.
[13] LI Lelin, WANG Wenxi, YANG Wentao, CHEN Hao, PENG Huanhua, ZHAO Qian. Gaussian mixture model and its application in remote sensing identification of industrial heat sources[J]. Remote Sensing for Natural Resources, 2025, 37(4): 173-183.
[14] WANG Xinshuang, ZHAO Yehe, LIU Jiange, SUN Xin, ZHANG Yongzhen, MAO Dehua. Remote sensing-based assessment of wetland restoration potential in important wetland reserves along the Silk Road[J]. Remote Sensing for Natural Resources, 2025, 37(4): 204-211.
[15] LIU Haoran, YAN Tianxiao, ZHU Yueqin, WANG Yanping, CHEN Zuyi, YANG Zhaoying, ZHU Haomeng. Landslide identification based on an improved YOLOv7 model: A case study of the Baige area[J]. Remote Sensing for Natural Resources, 2025, 37(4): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech