Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 31-37     DOI: 10.6046/zrzyyg.2023295
|
A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+
LIU Chenchen1(), GE Xiaosan1(), WU Yongbin1,2, YU Haikun3, ZHANG Beibei3
1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
2. Henan Surveying and Mapping Geographic Information Technology Center, Zhengzhou 450003, China
3. Henan Remote Sensing Institute, Zhengzhou 450003, China
Download: PDF(2344 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Extracting information about buildings from a large and complex set of remote sensing images has always been a hot research topic in the intelligent applications of remote sensing. To address issues such as inaccurate information extraction of buildings and the tendency to ignore small buildings within a complex environment in remote sensing images, this study proposed the SC-deep network-a semantic segmentation algorithm for remote sensing images based on a hybrid attention mechanism and Deeplabv3+. Utilizing an encoder-decoder structure, this network employs a backbone residual attention network to extract deep- and shallow-layer features. Meanwhile, this network aggregates the spatial and channel information weights in remote sensing images using a dilated space pyramid pool module and a channel-space attention module. These allow for effectively utilizing the multi-scale information of building structures in remote sensing images, thereby reducing the loss of image details during training. The experimental results indicate that the proposed method outperforms other mainstream segmentation networks on the Aerial imagery dataset. Overall, this method can effectively identify and extract the edges of complex buildings and small structures, exhibiting superior building extraction performance.

Keywords multi-scale information      building extraction      semantic segmentation      attention mechanisms      dilated convolution     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chenchen LIU
Xiaosan GE
Yongbin WU
Haikun YU
Beibei ZHANG
Cite this article:   
Chenchen LIU,Xiaosan GE,Yongbin WU, et al. A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+[J]. Remote Sensing for Natural Resources, 2025, 37(1): 31-37.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023295     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/31
Fig.1  Attention residual block
层级名称 输入尺寸 操作模块 重复
次数
输出
通道数
Conv1 2242×3 7×7卷积 1 128
Conv2_x 1122×64 Conv Block 1 256
Identity Block 2
Conv3_x 562×256 Conv Block 1 512
Identity Block 3
Conv4_x 282×512 Conv Block 1 1 024
Identity Block 5
Conv5_x 142×1 024 Conv Block 1 2 048
Identity Block 2
Conv6 72×2 048 1×1卷积 1 2 048
Tab.1  CAM-Resnet50 network structure
Fig.2  Channel attention module
Fig.3  Spatial attention module
Fig.4  SC-deep network
Fig.5  Image preprocessing results
实验环境 配置参数
CPU Intel(R) Xeon(R) Gold 6330
内存/GB 80
GPU RTX 3090
显存/GB 24
CUDA CUDA11.3
学习框架 Pytorch1.10.0
编程语言 Python3.8
Tab.2  Experiment environment configuration
主干网络 IoU Precision Recall F1-score
Xception 84.48 93.20 90.03 92.59
mobilenetv2 83.94 91.33 91.21 91.27
vit 72.58 88.65 80.01 84.11
CAM-Resnet50 88.75 94.86 93.23 94.04
Tab.3  Results of backbone network ablation experiments (%)
注意力模块位置 IoU Precision Recall F1-score
ASPP+CAM+SAM 88.82 94.86 93.31 94.08
ASPP+SAM+CAM 88.52 95.27 92.59 93.91
SAM+ASPP+CAM 88.76 94.81 93.29 94.04
SAM+CAM+ASPP 86.36 93.52 91.85 92.68
Deep+CAM,Low+SAM 88.86 95.05 93.18 94.10
Tab.4  Results of attention module ablation experiments (%)
序号 真实图像 U-Net FCN Deeplabv3+ SC-deep
1
2
3
Tab.5  Comparative experiment segmentation visualization results
模型 IoU Precision Recall F1-score
U-Net 85.13 92.31 91.62 91.97
FCN 87.95 93.66 93.52 93.59
Deeplabv3+ 84.48 93.20 90.03 92.59
CS-deep 88.86 95.05 93.18 94.10
Tab.6  Compare experimental results (%)
[1] 胡明洪, 李佳田, 姚彦吉, 等. 结合多路径的高分辨率遥感影像建筑物提取SER-UNet算法[J]. 测绘学报, 2023, 52(5):808-817.
doi: 10.11947/j.AGCS.2023.20210691
[1] Hu M H, Li J T, Yao Y J, et al. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5):808-817.
doi: 10.11947/j.AGCS.2023.20210691
[2] 吴炜, 骆剑承, 沈占锋, 等. 光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J]. 武汉大学学报(信息科学版), 2012, 37(7):800-805.
[2] Wu W, Luo J C, Shen Z F, et al. Building extraction from high resolution remote sensing imagery based on spatial-spectral method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):800-805.
[3] 贾士军, 王昆. 融合颜色和纹理特征的彩色图像分割[J]. 测绘科学, 2014, 39(12):138-142,147.
[3] Jia S J, Wang K. Color image segmentation by integrating color and texture features[J]. Science of Surveying and Mapping, 2014, 39(12):138-142,147.
[4] Lagunas E, Amin M G, Ahmad F, et al. Pattern matching for building feature extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2193-2197.
[5] Gong J, Ji S. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1):1-15.
doi: 10.11947/j.JGGS.2018.0101
[6] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[7] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer,2015:234-241.
[8] Zhuo Z W, Tajbakhsh N, Liang J M, et al. Unet++:A nested U-Net architecture for medical image segmentation[EB/OL].(2018-09-20).[2022-05-20].https://arxiv.org/abs/1807.10165.
url: https://arxiv.org/abs/1807.10165
[9] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[10] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Honolulu,HI, USA.IEEE,2017:6230-6239.
[11] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
[12] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
[12] Ji S P, Wei S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
[13] Yang H, Wu P, Yao X, et al. Building extraction in very high resolution imagery by dense-attention networks[J]. Remote Sensing, 2018, 10(11):1768.
[14] 赵凌虎, 袁希平, 甘淑, 等. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1):107-114.doi:10.6046/zrzyyg.2021460.
[14] Zhao L H, Yuan X P, Gan S, et al. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1):107-114.doi:10.6046/zrzyyg.2021460.
[15] Xia L, Mi S, Zhang J, et al. Dual-stream feature extraction network based on CNN and transformer for building extraction[J]. Remote Sensing, 2023, 15(10):2689.
[16] 郭文, 张荞. 基于注意力增强全卷积神经网络的高分卫星影像建筑物提取[J]. 国土资源遥感, 2021, 33(2):100-107.doi:10.6046/gtzyyg.2020230.
[16] Guo W, Zhang Q. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land and Resources, 2021, 33(2):100-107.doi:10.6046/gtzyyg.2020230.
[17] 吕少云, 李佳田, 阿晓荟, 等. Res_ASPP_UNet++:结合分离卷积与空洞金字塔的遥感影像建筑物提取网络[J]. 遥感学报, 2023, 27(2):502-519.
[17] Lyu S Y, Li J T, A X H, et al. Res_ASPP_UNet++:Building an extraction network from remote sensing imagery combining depthwise separable convolution with atrous spatial pyramid pooling[J]. National Remote Sensing Bulletin, 2023, 27(2):502-519.
[18] Chollet F. Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI,USA.IEEE,2017:1800-1807.
[19] Woo S, Park J, Lee J Y, et al. Cbam:Convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV).2018:3-19.
[1] CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
[2] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[3] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[4] LI Shiqi, YAO Guoqing. A landslide detection method using CNN- and SETR-based feature fusion[J]. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
[5] SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district[J]. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
[6] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[7] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[10] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[11] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[12] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[13] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[14] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[15] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech