Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 99-105     DOI: 10.6046/gtzyyg.2016.02.16
Technology and Methodology |
Monitoring of seasonal changes of Martian north polar ice cap with OMEGA images
ZHAGN Dingkai1,2, LIU Zhaoqin2, DI Kaichang2, YUE Zongyu2, LIU Feng1, GOU Sheng2
1. Survey and Mapping Institute of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China;
2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(6780 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The spatial variation extent of the annual seasonal melt of Martian polar ice caps is the most direct reflection of Mars global and regional climate changes. A method that utilizes hyperspectral images from OMEGA spectrometer on board ESA Mars Express for monitoring Mars ice cap by extracting seasonal ice cap ablation line is proposed in this study. Based on OMEGA infrared images from 6 periods of Martian year 28 and 29 that cover Martian northern hemisphere, the boundary of seasonal ice cap was extracted by supervised classification method which can distinguish between ice and bare land, and the melting rate of seasonal ice cap was also calculated and analyzed, with validation from high resolution HiRISE images. The results show that the melting rate of Martian northern polar ice cap is about 106 km2 every 10° solar longitude (LS). In addition, the comparison between the results and the terrain data from MOLA reveals that the regional abnormality of ice cap melting is mainly caused by the crater-induced topographic variation.

Keywords Jiaojiang-Taizhou Estuary      reclamation of mud flats      land use change      remote sensing     
:  TP79  
Issue Date: 14 April 2016
E-mail this article
E-mail Alert
Articles by authors
ZHANG Dengrong
XU Siying
WU Wenyuan
LU Haifeng
Cite this article:   
ZHANG Dengrong,XU Siying,XIE Bin, et al. Monitoring of seasonal changes of Martian north polar ice cap with OMEGA images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 99-105.
URL:     OR

[1] Bibring J P,Langevin Y,Poulet F,et al.Perennial water ice identified in the south polar cap of Mars[J].Nature,2004,428(6983):627-630.

[2] Langevin Y,Poulet F,Bibring J P,et al.Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars express[J].Science,2005,307(5715):1581-1584.

[3] Schmitt B,Schmidt F,Douté S,et al.Recession of the northern seasonal condensates on Mars by OMEGA/Mars express[J].LPI Contributions,2006,1323:8050.

[4] Paige D A,Herkenhoff K E,Murray B C.Mariner 9 observations of the south polar cap of Mars:Evidence for residual CO2 frost[J].Journal of Geophysical Research:Solid Earth,1990,95(B2):1319-1335.

[5] Feldman W C,Prettyman T H,Boynton W V,et al.CO2 frost cap thickness on Mars during northern winter and spring[J].Journal of Geophysical Research:Planets,2003,108(E9):5103.

[6] Schmidt F.Douté S,Schmitt B,et al.Automatic detection of H2O and CO2 ices in OMEGA/MEX images for the monitoring of the south polar cap recession[C]//Schmidt F,Douté S,Schmitt B,et al.Proceedings of the 37th annual lunar and planetary science conference.League,Texas:LPI,2006:1979.

[7] Smith D E,Zuber M T,Neumann G A.Seasonal variations of snow depth on Mars[J].Science,2001,294(5549):2141-2146.

[8] Antoniadi E M.La Planete Mercure Et La Rotation Des Satellites;Etude Basee Sur Les Resultats Obtenus Avec La Grande Lunette De L'observatoire de Meudon[M].Paris:Gauthier-Villars,1934.

[9] Fischbacher G E,Martin L J,Baum W A,et al.Seasonal behavior of the martian polar caps[J].Publications of the Astronomical Society of the Pacific,1969,81:538.

[10] Cantor B A,Wolff M J,James P B,et al.Recession of martian north polar cap:1990—1997 hubble space telescope observations[J].Bulletin of the American Astronomical Society,1997,29:963.

[11] Capen C F,Capen V W.Martian north polar cap,1962—1968[J].Icarus,1970,13(1):100-108.

[12] Iwasaki K,Saito Y,Akabane T.Behavior of the martian north polar cap,1975—1978[J].Journal of Geophysical Research:Solid Earth(1978-2012),1979,84(B14):8311-8316.

[13] Iwasaki K,Saito Y,Akabane T.Martian north polar cap 1979—1980[J].Journal of Geophysical Research:Solid Earth(1978—2012),1982,87(B12):10265-10269.

[14] Iwasaki K,Parker D C,Larson S,et al.Martian north polar cap 1996—1997[J].Icarus,1999,138(1):20-24.

[15] Benson J L,James P B.Yearly comparisons of the martian polar caps:1999—2003 Mars orbiter camera observations[J].Icarus,2005,174(2):513-523.

[16] James P B.Recession of martian north polar cap:1977—1978 viking observations[J].Journal of Geophysical Research:Solid Earth(1978—2012),1979,84(B14):8332-8334.

[17] James P B,North G R.The seasonal CO2 cycle on Mars:An application of an energy balance climate model[J].Journal of Geophysical Research,1982,87(B):10271-10283.

[18] James P B,Cantor B A.Martian north polar cap recession:2000 Mars orbiter camera observations[J].Icarus,2001,154(1):131-144.

[19] Giuranna M,Hansen G,Formisano V,et al.Spatial variability,composition and thickness of the seasonal north polar cap of Mars in mid-spring[J].Planetary and Space Science,2007,55(10):1328-1345.

[20] Appéré T,Schmitt B,Langevin Y,et al.Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars express[J].Journal of Geophysical Research,2011,116(E5):E05001.

[21] Clancy R T,Sandor B J,Wolff M J,et al.An intercomparison of ground-based millimeter,mgs tes,and viking atmospheric temperature measurements:Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere[J].Journal of Geophysical Research:Planets(1991—2012),2000,105(E4):9553-9571.

[22] Chicarro A,Martin P,Trautner R.The Mars Express Mission:An Overview[M]//Wilson A.Mars Express:The Scientific Payload.Noordwijk,Netherlands:ESA Publications Division,2004,1240:3-13.

[23] Bibring J P,Soufflot A,Berthé M,et al.OMEGA:Observatoire pour la Minéralogie,l'Eau,les Glaces et l'Activité[M]//Wilson A.Mars Express:The Scientific Payload.Noordwijk,Netherlands:ESA Publications Division,2004,1240:37-49.

[24] 胡全一,祝民强.火星高光谱遥感大气校正方法[J].东华理工大学学报:自然科学版,2008,31(3):242-248. Hu Q Y,Zhu M Q.Methods of atmospheric correction for hyperspectral remote sensing on Mars[J].Journal of East China Institute of Technology:Natural Science Edition,2008,31(3):242-248.

[25] Langevin Y,Vincendon M,Bibring J P,et al.Multi-band processing of observations of the polar regions of Mars with the Omega imaging spectrometer on board Mars express[C]//Proceedings of the 2nd Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.Reykjavik:IEEE,2010:1-4.

[26] James P B,Clancy R T,Lee S W,et al.Monitoring Mars with the hubble space telescope:1990—1991 observations[J].Icarus,1994,109(1):79-101.

[27] Zuber M T,Smith D E,Solomon S C,et al.Observations of the north polar region of Mars from the Mars orbiter laser altimeter[J].Science,1998,282(5396):2053-2060.

[28] Fray N,Schmitt B.Sublimation of ices of astrophysical interest:A bibliographic review[J].Planetary and Space Science,2009,57(14/15):2053-2080.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[5] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[10] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[11] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[14] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[15] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech