Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 51-58     DOI: 10.6046/gtzyyg.2017.03.07
|
A new method for remote sensing image fusion based on multi-scale sparse decomposition
XU Jindong, NI Mengying, TONG Xiangrong, ZHANG Yanjie, ZHENG Qiang
School of Computer and Control Engineering, Yantai University, Yantai 264005, China
Download: PDF(5503 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  To achieve better effect of remote sensing image fusion, the authors put forward a multi-scale sparse image decomposition method based on morphological component analysis (MCA). It combines curvelet transform basis and local discrete cosine transform(DCT)basis to form the decomposition dictionary and controls the entries of the dictionary so as to decompose the image into texture component and cartoon component. From the aspect of the amount of information, a remote sensing image(RSI)fusion method based on multi-scale sparse decomposition was proposed. By using sparse decomposition, the effective scale texture component of high resolution RSI and cartoon component of multi-spectral RSI were selected to be fused together. Compared with the classical fusion methods, the proposed fusion method gets higher spatial resolution and lower spectral distortion with a little computation load. Compared with sparse reconstruction fusion method, it achieves a higher algorithm speed and a better fusion result. Therefore,the proposed image fusion method based on multi-scale sparse decomposition has certain application value.
Keywords winter wheat      remote sensing      NDVI      time window      northwest Shandong Province      phenology     
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Qingqing
JIANG Luguang
LI Wenye
FENG Zhiming
Cite this article:   
ZHAO Qingqing,JIANG Luguang,LI Wenye, et al. A new method for remote sensing image fusion based on multi-scale sparse decomposition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 51-58.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.03.07     OR     https://www.gtzyyg.com/EN/Y2017/V29/I3/51
[1] Bobin J,Starck J L,Fadili J M,et al.Morphological component analysis:An adaptive thresholding strategy[J].IEEE Transactions on Image Processing,2007,16(11):2675-2681.
[2] 李 映,张艳宁,许 星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152.
Li Y,Zhang Y N,Xu X.Advances and perspective on morphological component analysis based on sparse representation[J].Acta Electronica Sinica,2009,37(1):146-152.
[3] Fadili M J,Starck J L,Bobin J,et al.Image decomposition and separation using sparse representations:An overview[J].Proceedings of the IEEE,2010,98(6):983-994.
[4] Candès E,Demanet L,Donoho D,et al.Fast discrete curvelet transforms[J].Multiscale Modeling and Simulation,2006,5(3):861-899.
[5] Beckouche S,Starck J L,Fadili J.Astronomical image denoising using dictionary learning[J].Astronomy and Astrophysics,2013,556:A132.
[6] Zibulevsky M,Elad M.L1-L2 optimization in signal and image processing[J].IEEE Signal Processing Magazine,2010,27(3):76-88.
[7] Yang M,Zhang L,Zhang D,et al.Relaxed collaborative representation for pattern classification[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI:IEEE,2012:2224-2231.
[8] 陶 卿,高乾坤,姜纪远,等.稀疏学习优化问题的求解综述[J].软件学报,2013,24(11):2498-2507.
Tao Q,Gao Q K,Jiang J Y,et al.Survey of solving the optimization problems for sparse learning[J].Journal of Software,2013,24(11):2498-2507.
[9] Olshausen B A,Field D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381(6583):607-609.
[10] Mallat S.A Wavelet Tour of Signal Processing[M].3rd ed.Burlington,MA:Academic Press,2008.
[11] Aharon M,Elad M,Bruckstein A.K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[12] Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1998,20(1):33-61.
[13] Donoho D L,Tsaig Y,Drori I,et al.Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
[14] 姜纪远,夏 良,章 显,等.一种具有O(1/T)收敛速率的稀疏随机算法[J].计算机研究与发展,2014,51(9):1901-1910.
Jiang J Y,Xia L,Zhang X,et al.A sparse stochastic algorithm with O(1/T) convergence rate[J].Journal of Computer Research and Development,2014,51(9):1901-1910.
[15] Bruckstein A M,Donoho D L,Elad M.From sparse solutions of systems of equations to sparse modeling of signals and images[J].SIAM Review,2009,51(1):34-81.
[16] Xie C J,Tan J Q,Chen P,et al.Multi-scale patch-based sparse appearance model for robust object tracking[J].Machine Vision and Applications,2014,25(7):1859-1876.
[17] Ophir B,Lustig M,Elad M.Multi-scale dictionary learning using wavelets[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(5):1014-1024.
[18] Fadili J M,Starck J L,Elad M,et al.MCALab:Reproducible research in signal and image decomposition and inpainting[J].Computing in Science and Engineering,2010,12(1):44-63.
[19] Choi M.A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1672-1682.
[20] Zhou H Z,Wu S,Mao D F,et al.Improved Brovey method for multi-sensor image fusion[J].Journal of Remote Sensing,2012,16(2):343-360.
[21] Pajares G,de la Cruz J M.A wavelet-based image fusion tutorial[J].Pattern Recognition,2004,37(9):1855-1872.
[22] 尹 雯,李元祥,周则明,等.基于稀疏表示的遥感图像融合方法[J].光学学报,2013,33(4):0428003.
Yin W,Li Y X,Zhou Z M,et al.Remote sensing image fusion based on sparse representation[J].Acta Optica Sinica,2013,33(4):0428003.
[23] Zhu X X,Bamler R.A sparse image fusion algorithm with application to pan-sharpening[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(5):2827-2836.
[24] Li S T,Yin H T,Fang L Y.Remote sensing image fusion via sparse representations over learned dictionaries[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4779-4789.
[25] Jiang Y,Wang M H.Image fusion with morphological component analysis[J].Information Fusion,2014,18:107-118.
[26] Pei W J,Wang G A,Yu X C.Performance evaluation of different references based image fusion quality metrics for quality assessment of remote sensing image fusion[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Munich:IEEE,2012:2280-2283.
[27] Peyré G,Fadili J,Starck J L.Learning adapted dictionaries for geo-metry and texture separation[C]//Proceedings of SPIE,Wavelets XII.San Diego,CA:SPIE,2007.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[4] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[5] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[6] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[7] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[8] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[9] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[10] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[11] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[12] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[13] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[14] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[15] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech