Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1994, Vol. 6 Issue (3) : 48-54     DOI: 10.6046/gtzyyg.1994.03.07
Research and Discussion |
APPLICATION OF REGRESSION ANALYSIS METHOD TO SPECTAM OF ROCK AND CHEMICAL COMPONENT
Liu Yunliang, Wu Zhishan, Wang Xiaopei, Jia Jianxiu
Chang Chun University of Ceology
Download: PDF(429 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Abstract This paper applies method of multivariate rogression to study corelation between spectral characteristics of rocks and Chemical Component of rocks.The main chemical components controlling the rocks spectum are found out.The main chemical component of sedimentary rock,metamorphic rock and eruptive rock which effect rock sepectum are also determined.The study discovers that spectra characteristios of H2O+ and H2O- is different to some extent.The results of research show that the new method has good prospects for the evaluation and application of the spectral characteristics of rocks.

Keywords POS      DOM      Photogrammetry     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Xiong-Wei
WANG Jian-Chao
GUO Da-Hai
ZHANG Zong-Gui
ZHANG Jian-Jin
YANG Jin
Cite this article:   
ZHENG Xiong-Wei,WANG Jian-Chao,GUO Da-Hai, et al. APPLICATION OF REGRESSION ANALYSIS METHOD TO SPECTAM OF ROCK AND CHEMICAL COMPONENT[J]. REMOTE SENSING FOR LAND & RESOURCES, 1994, 6(3): 48-54.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1994.03.07     OR     https://www.gtzyyg.com/EN/Y1994/V6/I3/48


[1] 中国科学院长春地理研究所编.长春遥感试验区地物光潜曲线图册.北京:科学出版社, 1979.


[2] 中国科学院空间科学技术中心编·中国地球资源光谱信息资料汇编.北京:能源出版社, 1989.


[3] 童庆禧等编.中国典型地物波谱及其特征分析.北京:科学出版社, 1990.


[4] 王学仁编著.地质数据的多变盆统计分析.北京, 科学出版社, 1982.


[5] John C.D.Statistics and Data Analysis in Geology John wiley&Sons, ine, 1973.

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[3] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[4] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[5] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[6] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[7] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[8] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[9] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[10] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[11] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[12] ZHENG Xiongwei, PENG Bei, SHANG Kun. Assessment of the interpretation ability of domestic satellites in geological remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 1-10.
[13] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[14] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[15] WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech