Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 190-198     DOI: 10.6046/gtzyyg.2019.04.25
|
Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city
Qi CAO1, Manjiang SHI1(), Liang ZHOU2, Ting WANG3, Lijun PENG1, Shilei ZHENG1
1. College of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
2. College of Surveying and Geographic Information, Lanzhou Jiaotong University, Lanzhou 730070, China
3. Institute of Geographic Science and Resources, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(5848 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Bare land is considered to be an important source causing urban heat island (UHI) in the urban underlying surface. However, quantitative description of the contribution of bare land to UHI in different periods of urbanization remains vague. Taking three phase Landsat TM/OLI remote sensing images from 2005 to 2017 of Mianyang, a mountain city in southwest China, as the research area and based on inverting the thermal environment response characteristics of land use/land cover change, the authors constructed the contribution index of bare land to UHI effect and analyzed the spatial and temporal changes of the surface thermal environment of bare land in the process of urbanization. The results are as follows: (1) In 2005—2017, bare land accounted for 4.73% (53.98 km 2 in 2005) to 6.34% (72.28 km 2 in 2011) in the study area, showing a trend of “increasing first and then decreasing” with total area (5.54 km 2) decreasing. Bare land was mainly distributed along new roads, urban development zones and urban-rural boundaries. (2) In 2005—2017, with the spatial agglomeration of bare land patches, the surface temperature of bare land in high-density area was significantly higher than that in low-density area, but the influence of bare land topography (elevation, slope, aspect), patch area and shape on the surface temperature of bare land was not significant. (3) In 2005—2017, the absolute difference of surface temperature between bare land and rural areas increased from 1.73 ℃ to 2.12 ℃, which was lower than the temperature of urban impermeable surface and rural area (3.07~3.23 ℃), and the contribution of bare land to urban heat island effect increased from 34% (2005) to 37% (2011) and finally decreased to 20% (2017). This study can provide a scientific basis for evaluating the spatial and temporal changes of urban bare land elements and mitigating the urban heat island effect.

Keywords bare land      surface temperature      urban heat island      Landsat TM/OLI      mountain city      Mianyang City     
:  TP79  
Corresponding Authors: Manjiang SHI     E-mail: shimj111@163.com
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi CAO
Manjiang SHI
Liang ZHOU
Ting WANG
Lijun PENG
Shilei ZHENG
Cite this article:   
Qi CAO,Manjiang SHI,Liang ZHOU, et al. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.25     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/190
Fig.1  Landsat OLI images of the study areas in May 1,2017 displayed in false color composite
数据类型 卫星过境时间 空间分辨率 云覆盖度/% 主要用途
遥感影像 Landsat TM 2005-04-14 多光谱波段为30 m 0 解译研究区LUCC信息;
反演研究区地表温度
Landsat TM 2011-06-02 热红外波段为120 m
Landsat OLI/TIRS 2017-05-01 多光谱波段为30 m 4
全色波段波段为15 m
热红外波段为100 m
辅助数据 数字高程模型(digital
elevation model ,DEM)
30 m 0 高程、坡度、坡向分析
Google Earth影像 2017-10-01
2010-11-15
0.5 m 0 训练样本选取和精度验证
Tab.1  Landsat images and auxiliary data were used in this study
Fig.2  LUCC in the study area from 2005 to 2017
Fig.3  Annual average growth rate and growth intensity of LUCC in the study area from 2005 to 2017
温度等级 2005年 2011年 2017年
研究区地表
温度面积
裸地地表
温度面积
研究区地表
温度面积
裸地地表
温度面积
研究区地表
温度面积
裸地地表
温度面积
高温区 4.05 33.38 4.14 29.52 4.12 26.09
次高温区 13.50 39.01 12.94 38.97 15.45 46.84
中温区 28.19 17.74 31.63 22.14 30.58 22.37
次低温区 20.97 8.92 18.56 8.27 17.19 4.02
低温区 33.29 0.95 32.73 1.10 32.66 0.68
Tab.2  Area ratios corresponding to different levels of surface temperature of the study area and bare land from 2005 to 2017(%)
Fig.4  Scattered plots of area, shape index and surface temperature of bare land in the study area from 2005 to 2017
Fig.5  Bare land density distribution and its surface temperature distribution characteristics from 2005 to 2017
年份 高密度
区-高温
高密度
区-次高温
高密度
区-中温
次高密度
区-高温
次高密度
区-次高温
次高密度
区-中温
中密度
区-高温
中密度
区-次高温
中密度
区-中温
合计
2005年 2.53 4.18 2.32 5.36 11.49 10.50 5.82 16.20 23.54 81.93
2011年 2.73 5.80 4.78 3.98 9.72 13.13 4.16 14.07 26.29 84.66
2017年 3.15 9.61 7.29 3.64 11.17 15.58 4.10 13.26 22.94 90.73
Tab.3  Distribution area of bare land temperature grade under different density grades from 2005 to 2017(%)
Fig.6  Scattered plots of the topography factor and surface temperature in the study area from 2005 to 2017
年份 TUrban/℃ TRural/℃ TBear/℃ TUrban-TRural/℃ TBare-TRural/℃ CUHI/%
2005年 24.59 21.52 23.24 3.07 1.72 34
2011年 29.69 26.58 29.06 3.11 2.48 37
2017年 24.79 21.56 23.68 3.23 2.12 20
Tab.4  The TUrban-TRural,TBare-TRural and CUHI from 2005 to 2017
[1] Hansen M C, Egorov A, Potapov P V , et al. Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD)[J]. Remote Sensing of Environment, 2014,140(1):466-484.
[2] 高会议, 郭胜利, 刘文兆 . 黄土旱塬裸地土壤呼吸特征及其影响因子[J]. 生态学报, 2010,31(18):5217-5224.
[2] Gao H Y, Guo S L, Liu W Z . Characteristics of soil respiration in fallow and its influencing factors at arid-highland of Loess Plateau[J]. Acta Ecologica Sinica, 2011,31(18):5217-5224.
[3] 黄积庆, 郑有飞, 徐静馨 , 等. 南京秋季裸地臭氧干沉降通量观测及土壤阻力模拟[J]. 应用生态学报, 2016,27(10):3196-3204.
[3] Huang J Q, Zheng Y F, Xu J X , et al. O3 dry deposition flux observation and soil resistance modeling over a bare soil in Nanjing area in autumn[J]. Chinese Journal of Applied Ecology, 2016,27(10):3196-3204.
[4] 徐谦, 李令军, 赵文慧 , 等. 北京市建筑施工裸地的空间分布及扬尘效应[J]. 中国环境监测, 2015,31(5):78-85.
[4] Xu Q, Li L J, Zhao W H , et al. Spatial distribution of building sites and related emissions of particulate across Beijing,China[J]. Environmental Monitoring in China, 2015,31(5):78-85.
[5] 胡华浪, 陈云浩, 宫阿都 . 城市热岛的遥感研究进展[J]. 国土资源遥感, 2005,17(3). 5-9.doi: 10.6046/gtzyyg.2005.03.02.
doi: 10.6046/gtzyyg.2005.03.02
[5] Hu H L, Chen Y H, Gong A D . Advances in the application of remotely sensed data to the study of urban heat island[J]. Remote Sensing for Land and Resources, 2005,17(3). 5-9.doi: 10.6046/gtzyyg.2005.03.02.
[6] 杜金龙, 朱记伟, 解建仓 , 等. 基于GIS的城市土地利用研究进展[J]. 国土资源遥感, 2018,30(3):9-17.doi: 10.6046/gtzyyg.2018.03.02.
[6] Du J L, Zhu J W, Xie J C , et al. An overview of urban land use research based on GIS[J]. Remote Sensing for Land and Resources, 2018,30(3):9-17.doi: 10.6046/gtzyyg.2018.03.02.
[7] Omran E S E . Detection of land-use and surface temperature change at different resolutions[J]. Journal of Geographic Information System, 2012,4(3):189-203.
[8] 历华, 曾永年, 柳钦火 . 基于遥感的长沙市城市热岛与土地利用/覆盖变化研究[J]. 国土资源遥感, 2008,20(4):47-52.doi: 10.6046/gtzyyg.2008.04.12.
doi: 10.6046/gtzyyg.2008.04.12
[8] Li H, Zeng Y N, Liu Q H . A remote sensing image-based study of the relationship between urban heat island and land use/cover changes in Changsha City[J]. Remote Sensing for Land and Resources, 2008,20(4):47-52.doi: 10.6046/gtzyyg.2008.04.12.
[9] 汪昭兵, 杨永春 . 探析城市规划引导下山地城市空间拓展的主导模式[J]. 山地学报, 2008,26(6):652-664.
[9] Wang Z B, Yang Y C . Analysing the primary pattern of the space expansion of the mountainous city guided by urban planning[J]. Journal of Mountain Science, 2008,26(6):652-664.
[10] 朱兆华, 徐国钢, 陈晓蓉 , 等. 道路边坡及裸露山体植被恢复与生态防护技术[J].中国科技成果,2014(16):26-30.
[10] Zhu Z H, Xu G G, Chen X R , et al. Vegetation restoration and ecological protection techniques for road slopes and bare hills[J].Chinese Science and Technology Achievements,2014(16):26-30.
[11] Estoque R C, Murayama Y . Monitoring surface urban heat island formation in a tropical mountain city using Landsat data(1987—2015)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,133:18-29.
[12] 韩贵锋, 叶林, 孙忠伟 . 山地城市坡向对地表温度的影响——以重庆市主城区为例[J]. 生态学报, 2014,34(14):4017-4024.
doi: <a href='http://dx.doi.org/10.5846/stxb201211271679'>10.5846/stxb201211271679</a>
[12] Han G F, Ye L, Sun Z W . Influence of aspect on land surface temperature in mountainous city:A case study in central area of Chongqing City[J]. Acta Ecologica Sinica, 2014,34(14):4017-4024.
[13] 吕志强, 庞容, 朱金盛 , 等. 山地城市热环境及其聚落特征的关联分析[J]. 重庆大学学报, 2017,40(05):60-71.
[13] Lyu Z Q, Pang R, Zhu J S , et al. The correlation analysis of surface thermal environment and settlement characteristics in the hilly city[J]. Journal of Chongqing University. 2017,40(5):60-71.
[14] 蔡智, 韩贵锋 . 山地城市空间形态的地表热环境效应——基于LCZ的视角[J]. 山地学报, 2018,36(4):617-627.
[14] Cai Z, Han G F . Assessing land surface temperature in the mountain city with different urban spatial form based on local climate zone scheme[J]. Journal of Mountain Science, 2018,36(4):617-627.
[15] 刘鑫 . 遥感探测技术在山区城市热环境中的应用研究[D]. 昆明:昆明理工大学, 2011.
[15] Liu X . Application of Remote Sensing Detection Technology in Urban Thermal Environment in Mountainous Areas[D]. Kunming:Kunming University of Technology, 2011.
[16] 匡文慧 . 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018,38(10):1643-1652.
doi: 10.13249/j.cnki.sgs.2018.10.008
[16] Kuang W H . Advance and future prospects of urban land use/cover change and ecological regulation of thermal environment[J]. Scientia Geographica Sinica, 2018,38(10):1643-1652.
[17] Ranagalage M, Estoque R C, Zhang X , et al. Spatial changes of urban heat island formation in the Colombo District,Sri Lanka:Implications for sustainability planning[J]. Sustainability, 2018,10(5):1367.
[18] 董婷, 焦利民, 许刚 . 基于分层分类法提取城市裸地信息[J]. 测绘地理信息, 2016,41(4):56-61.
[18] Dong T, Jiao L M, Xu G . Extracting city bare land using hierarchical classification method[J]. Journal of Geomatics, 2016,41(4):56-61.
[19] 徐涵秋, 王美雅 . 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016,20(5):1270-1289.
[19] Xu H Q, Wang M Y . Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016,20(5):1270-1289.
[20] 李霞, 徐涵秋, 李晶 , 等. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016,18(1):117-123.
doi: 10.3724/SP.J.1047.2016.00117
[20] Li X, Xu H Q, Li J , et al. Extraction of bare soil features from SPOT-5 imagery based on NDSI and NDISI[J]. Journal of Geo-Information Science, 2016,18(1):117-123.
[21] 刘纪远, 宁佳, 匡文慧 , 等. 2010—2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018,73(5):789-802.
doi: 10.11821/dlxb201805001
[21] Liu J Y, Ning J, Kuang W H , et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010—2015[J]. Acta Ggeographica Sinica, 2018,73(5):789-802.
[22] Shi M, Xie Y, Cao Q . Spatiotemporal changes in rural settlement land and rural population in the middle basin of the Heihe River,China[J]. Sustainability, 2016,8(7):614.
[23] 段亚明, 刘勇, 刘秀华 , 等. 基于POI大数据的重庆主城区多中心识别[J]. 自然资源学报, 2018,33(5):788-800.
[23] Duan Y M, Liu Y, Liu X H , et al. Identification of polycentric urban structure of central Chongqing using points of interest big data[J]. Journal of Natural Resources, 2018,33(5):788-800.
[24] 池腾龙, 曾坚, 刘晨 . 近30年武汉市热环境格局演化机制及扩散模式研究[J]. 国土资源遥感, 2017,29(4):197-204.doi: 10.6046/gtzyyg.2017.04.30.
[24] Chi T L, Zeng J, Liu C . A study of evolution mechanism and diffusion mode pattern of thermal environment for Wuhan City in the past 30 years[J]. Remote Sensing for Land and Resources, 2017,29(4):197-204.doi: 10.6046/gtzyyg.2017.04.30.
[25] 王璐瑶 . 武汉土地利用对城市热环境的影响研究[D]. 武汉:华中师范大学, 2016.
[25] Wang L Y . Analysis on the Influence of Land Use on City Thermal Environment[D]. Wuhan:Central China Normal University, 2016.
[26] Feng H, Zhao X, Chen F , et al. Using land use change trajectories to quantify the effects of urbanization on urban heat island[J]. Advances in Space Research, 2014,53(3):463-473.
[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[3] WANG Meiya, XU Hanqiu. A comparative study on the changes in heat island effect in Chinese and foreign megacities[J]. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
[4] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[5] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[6] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[7] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[8] WANG Ping, MAO Kebiao, MENG Fei, YUAN Zijin. Spatiotemporal evolution of sea surface temperature in the East China Sea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 227-235.
[9] CAO Yong, TAO Yuxiang, DENG Lu, LUO Xiaobo. An impervious surface index construction for restraining bare land[J]. Remote Sensing for Land & Resources, 2020, 32(3): 71-79.
[10] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[11] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[12] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[13] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[14] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[15] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech