Please wait a minute...
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 71-79     DOI: 10.6046/gtzyyg.2020.03.10
An impervious surface index construction for restraining bare land
CAO Yong1(), TAO Yuxiang1(), DENG Lu1, LUO Xiaobo1,2
1. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065,China
2. Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
Download: PDF(7446 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

At present, the method of extracting the impervious surface area based on the impervious surface area according to the impervious surface spectral index has been widely used because of its concision and speed. However, the method of extracting impervious surface by spectral index has the disadvantage that bare land and impervious surface are easily confused. To tackle this problem, the authors created impervious surface and bareness area index (ISBAI) according to the spectral feature difference of impervious surface, bare land and water body as well as vegetation in the 4, 5 and 6 bands of Landsat8 OLI images. Based on ISBAI and bareness area index (BAI), the authors built a new type of impervious surface index, called the bareness - restrained impervious surface index (BRISI). Improved double-window flexible pace search (IDFPS) method was used to determine the optimal threshold, and impervious surface extraction was performed. Chongqing (a mountain city) and Xi’an (a plain city) were selected as the research area to evaluate the accuracy of BRISI extraction in comparison with other commonly used impervious surface indices. The experimental results show that the extraction accuracy of BRISI in the experimental area of Chongqing and Xi’an experimental area reach 86.8% and 86.8% respectively, in comparison with the accuracy of all other indices that took part in the contrast, BRISI extraction accuracy is the highest. Meanwhile, BRISI also eliminates the influence of bare land in the construction area extraction, and overcomes the problem that it is difficult for other impervious surface indices to distinguish bare land from impervious surface.

Keywords impervious surface      bare land      BRISI(bareness-restrained impervious surface index)      IDFPS(improved double-flexible pace search)     
:  TP79  
Corresponding Authors: TAO Yuxiang     E-mail:;
Issue Date: 09 October 2020
E-mail this article
E-mail Alert
Articles by authors
Yong CAO
Yuxiang TAO
Xiaobo LUO
Cite this article:   
Yong CAO,Yuxiang TAO,Lu DENG, et al. An impervious surface index construction for restraining bare land[J]. Remote Sensing for Land & Resources, 2020, 32(3): 71-79.
URL:     OR
Fig.1  Research area image
序号 波段 波长范围/μm 空间分辨率/m
B1 海岸 0.433~0.453 30
B2 蓝光 0.450~0.515 30
B3 绿光 0.525~0.600 30
B4 红光 0.630~0.680 30
B5 近红外 0.845~0.885 30
B6 短波红外1 1.560~1.660 30
B7 短波红外2 2.100~2.300 30
B8 全色 0.500~0.680 15
B9 卷云 1.360~1.390 30
B10 热红外1 10.60~11.19 100
B11 热红外2 11.50~12.51 100
Tab.1  Landsat8 OLI band information
Fig.2  Reflectivity curve of surface object
Fig.3  DN of the ISBAI and BAI indices
研究区 不透水面 裸地 水体 植被
研究区1 1.685 1.288 -0.297 0.511
研究区2 1.861 0.923 -0.192 0.407
Tab.2  Mean values of the BRISI of two research regions
Fig.4  Comparison of thematic information of impervious surface spectral index in research area 1 based on Landsat8 images
Fig.5  Comparison of thematic information of impervious surface spectral index in research area 2 based on Landsat8 images
Fig.6  Thematic information on impervious surfaces based on different spectral indices in research area 1
Fig.7  Thematic information on impervious surfaces based on different spectral indices in research area 2
研究区 指数 阈值 生产者
研究区1 BRISI 0.149 89.7 87.2 86.8 0.724
NDBI -0.069 91.2 62.9 63.6 0.434
IBI 0.152 90.8 76.2 73.1 0.515
CBI 0.254 83.3 80.1 83.5 0.681
EBBI 0.268 83.6 80.8 82.9 0.627
NDISI 0.162 82.3 81.1 82.1 0.693
研究区2 BRISI 0.248 88.3 89.3 88.4 0.729
NDBI 0.026 91.4 59.1 58.2 0.399
IBI 0.469 90.2 63.5 65.1 0.492
CBI 0.245 87.7 83.4 84.7 0.687
EBBI 0.351 82.5 69.3 71.4 0.592
NDISI 0.188 83.1 84.0 82.0 0.655
Tab.3  Accuracy assessment of other indices and BRISI
[1] Slonecker E T, Jennings D B, Garofalo D. Remote sensing of impervious surfaces:A review[J]. Remote Sensing Reviews, 2001,20(3):227-255.
doi: 10.1080/02757250109532436 url:
[2] Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
doi: 10.1080/01431160304987 url:
[3] Assyakur A R, Adnyana I W S, Arthana I W, et al.Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area[J]. Remote Sensing, 2012,4(10):2957-2970.
doi: 10.3390/rs4102957 url:
[4] 刘畅, 杨康, 程亮, 等. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019,31(3):148-158.doi: 10.6046/gtzyyg.2019.03.19.
[4] Liu C, Yang K, Cheng L, et al. Comparison of remote sensing information extraction methods for Landsat8 impervious surface[J]. Remote Sensing for Land and Resources, 2019,31(3):148-158.doi: 10.6046/gtzyyg.2019.03.19.
[5] Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008,29(14):4269-4276.
doi: 10.1080/01431160802039957 url:
[6] Sun G, Chen X, Jia X, et al. Combinational build-up index (CBI) for effective impervious surface mapping in urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017,9(5):2081-2092.
[7] Xu H Q. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010,76(5):557-565.
[8] Ridd M K. Exploring a V-I-S(vegetation-impervious surfacesoil)model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185.
doi: 10.1080/01431169508954549 url:
[9] Deng C, Wu C. BCI:A biophysical composition index for remote sensing of urban environments[J]. Remote Sensing of Environment, 2012,127(5):247-259.
doi: 10.1016/j.rse.2012.09.009 url:
[10] Chen W, Liu L, Zhang C, et al. Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images [C]//IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2004,8292837.
[11] Rogers A S, Kearney M S. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices[J]. International Journal of Remote Sensing, 2004,25(12):2317-2335.
doi: 10.1080/01431160310001618103 url:
[12] Zhao H, Chen X. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+ [C]//Proceedings of Geoscience and Remote Sensing Symposium.IEEE, 2005: 1666-1668.
[13] Li S, Chen X. A new bare-soil index for rapid mapping developing areas using Landsat8 data[J].ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2014,XL-4:139-144.
doi: 10.5194/isprsarchives-XL-4-139-2014 url:
[14] 李霞, 徐涵秋, 李晶, 等. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016,18(1), 117-123.
doi: 10.3724/SP.J.1047.2016.00117 url:
[14] Li X, Xu H Q, Li J, et al. Extraction of bare soil information from SPOT-5 image based on NDSI and NDISI index[J]. Journal of Geo-Information Science, 2016,18(1):117-123.
[15] 窦鹏, 陈洋波, 张涛, 等. 基于Landsat ETM+影像的增强型裸地指数研究[J]. 地理与地理信息科学, 2017,33(2):25-31.
[15] Dou P, Chen Y B, Zhang T, et al. Study of enhanced bared land index using Landsat ETM+ imagery[J]. Geography and Geo-Information Science, 2017,33(2):25-31.
[16] Chu Q W, Zhang H Q, Wu Y W, et al. Application research of Landsat-8[J]. Remote Sensing Information, 2013,28(4):110-114.
[17] Tran D B, Puissant A, Badariotti D, et al. Optimizing spatial resolution of imagery for urban form detection:The cases of France and Vietnam[J]. Remote Sensing, 2011,3(10):2128-2147.
doi: 10.3390/rs3102128 url:
[18] Luo X B, Peng Y D, Gao Y H. An improved optimal segmentation threshold algorithm and its application in the built-up quick mapping[J]. Journal of the Indian Society of Remote Sensing, 2017,45(6):1-12.
doi: 10.1007/s12524-016-0569-2 url:
[19] 李志婷, 王昌昆, 潘贤章, 等. 基于模拟Landsat-8 OLI数据的小麦秸秆覆盖度估算[J]. 农业工程学报, 2016,32(s1):145-152.
[19] Li Z T, Wang C K, Pan X Z, et al. Estimation of wheat straw mulching based on simulated Landsat-8 OLI data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(s1):145-152.
[1] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[2] ZHAO Yi, XU Jianhui, ZHONG Kaiwen, WANG Yunpeng, HU Hongda, WU Pinghao. Impervious surface extraction based on Sentinel-2A and Landsat8[J]. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
[3] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[4] Ru WANG, Yanfang ZHANG, Hongmin ZHANG, Yun LI. Study on the relationship between impervious surface coverage and artificial heat in new urban districts: A case study of Xixian New District, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 247-254.
[5] Qi CAO, Manjiang SHI, Liang ZHOU, Ting WANG, Lijun PENG, Shilei ZHENG. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
[6] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[7] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[8] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[9] Xiaoping ZHANG, Ying LYU, Huaguo ZHANG, Chaokui LI. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land & Resources, 2018, 30(2): 178-185.
[10] LI Xinyu, DU Peijun, ALIM Samat. Spatial-temporal analysis of urban heat island effect and surface parameters variation in Nanjing City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 177-183.
[11] ZHU Honglei, LI Ying, LIU Zhaoli, FU Bolin. Estimation of impervious surface based on semi-constrained spectral mixture analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 48-53.
[12] YANG Keming, ZHOU Yujie, QI Jianwei, WANG Linwei, LIU Shiwen. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 134-139.
[13] LI Xiaoning, ZHANG Youjing, SHE Yuanjian, CHEN Liwen, CHEN Jingxin. Estimation of impervious surface percentage of river network regions using an ensemble leaning of CART analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 174-179.
[14] LI Weina, YANG Jiansheng, LI Xiao, ZHANG Jilong, LI Shiwei. Extraction of urban impervious surface information from TM image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 66-70.
[15] REN Jin-hua, WU Shao-hua, ZHOU Sheng-lu, LIN Chen. Advances in Remote Sensing Research on Urban Impervious Surface[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 8-15.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech