Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (1) : 224-231     DOI: 10.6046/gtzyyg.2020.01.30
|
Research on the geological background of tea planting in Duyun City based on RS and GIS
Xuanchi CHEN, Rong CHEN(), Yufeng WU, Yueyue WANG
Mining College, Guizhou University, Guiyang 550025, China
Download: PDF(3516 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To investigate the geological background of Duyun tea planting, the authors studied the relationship between geological background and high quality Duyun tea planting efficiently and rapidly based on the theory of agricultural geology and using RS and GIS technology. Firstly, by using Sentinel-2A and Landsat8 remote sensing images and object-oriented classification method in combination with customized TEI and tea phenology information, high-precision extraction of tea planting areas was realized. Then, the spatial analysis function of GIS was used to count the distribution of various geological backgrounds in Duyun and the area of tea planting on different backgrounds accurately, and the geological background of tea planting in Duyun was investigated comprehensively. Lastly, the geochemical characteristics of rocks with different backgrounds were investigated by testing and analyzing the sampled data, and the planting map of suitable geological background area for tea planting in Duyun was compiled. The results show that the chemical elements in Duyun clastic rocks are obviously better than those in carbonate rocks. Clastic rocks are the advantageous geological background for tea planting and the important influencing factors for Duyun to produce high quality tea. The distribution area of clastic rocks accounts for 47.86% of the total area of Duyun, which means that clastic rocks possess the largest proportion of all lithologies, followed by dolomite, which accounts for 16.80%. 67.82% of Duyun tea is planted in clastic rock background, which is the basic condition for local tea production.

Keywords RS      GIS      Douyun tea      geological background     
:  TP79  
Corresponding Authors: Rong CHEN     E-mail: 1304656630@qq.com
Issue Date: 14 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuanchi CHEN
Rong CHEN
Yufeng WU
Yueyue WANG
Cite this article:   
Xuanchi CHEN,Rong CHEN,Yufeng WU, et al. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.01.30     OR     https://www.gtzyyg.com/EN/Y2020/V32/I1/224
Fig.1  Location of study area
Fig.2  Extraction process of tea planting information
Fig.3  Spectral curves of different vegetation
Fig.4  Contrast of landmark characteristics between image and TEI
Fig.5  TEI Value of different vegetation near Gaozhai Reservoir
Fig.6  Distribution of tea planting in Duyun
Fig.7  Overlay map of tea planting area and petrologic series
岩性 面积/km2 占总面积
百分比/%
茶树种植
面积/km2
占茶树种植总
面积百分比/%
石灰岩 305.60 13.37 0.22 3.48
白云岩 384.33 16.80 0.94 15.18
石灰岩白云岩互层 263.46 11.51 0.57 9.25
碳酸盐岩夹碎屑岩 213.63 9.33 0.26 4.20
碎屑岩 1 095.15 47.86 4.21 67.82
第四系 25.86 1.13 0.00 0.07
总计 2 288.03 100 6.20 100
Tab.1  Geological background of tea planting
岩石
类型
岩石
编号
常量元素 微量元素
P/(mg·
kg-1)
K/
%
S/
%
Na/
%
Al/
%
Ca/
%
Fe/
%
Mg/
%
Mn/(mg·
kg-1)
Zn/(mg ·
kg-1)
Cu/(mg ·
kg-1)
Mo/(mg·
kg-1)
V/(mg·
kg-1)
Co/(mg·
kg-1)
碎屑
1 390 3.69 0.01 0.14 8.95 0.02 5.04 1.45 202 108 16.3 0.12 122 24.0
2 490 2.90 0.01 0.52 8.29 0.05 4.50 1.34 380 102 9.9 0.24 105 32.7
均值1 440 3.30 0.01 0.33 8.62 0.04 4.77 1.40 291 155 13.1 0.18 114 28.4
非碎
屑岩
1 140 1.01 0.03 0.04 1.81 20.80 0.83 8.06 115 22 6.7 0.15 22 4.6
2 160 1.90 0.02 0.05 2.77 15.85 1.15 9.40 121 37 3.5 0.41 27 5.3
3 40 1.17 0.02 0.02 0.42 20.10 0.51 11.80 86 12 4.9 0.90 9 11.3
均值2 113 1.36 0.02 0.04 1.67 18.92 0.83 9.75 107 24 5.0 0.49 19 7.1
均值1-均值2 327 1.94 -0.01 0.29 6.95 -18.88 3.94 -8.35 184 131 8.1 -0.31 95 21.3
Tab.2  Content of rock chemical element
Fig.8  Advantage zoning of tea planting in Duyun City
[1] 吴跃东, 向钒, 赵家厚 , 等. 黄山茶叶品质与产地地质背景关系探讨[J]. 资源调查与环境, 2010,31(1):39-49.
[1] Wu Y D, Xiang F, Zhao J H , et al. Approach to relationship between Huangshan tea quality and geological background of growing areas[J]. Resources Survey and Environment, 2010,31(1):39-49.
[2] 任明强, 赵宾, 赵国宣 , 等. 贵州茶叶品质与地质环境的关系[J]. 贵州农业科学, 2011,39(2):30-33.
[2] Ren M Q, Zhao B, Zhao G X , et al. Correlation between tea quality and geological environment in Guizhou[J]. Guizhou Agricultural Sciences, 2011,39(2):30-33.
[3] 韩晓彤, 毕坤, 杨瑞东 . 贵州地质背景与茶叶品质关系初探[J]. 贵州农业科学, 2010,38(4):72-76.
[3] Han X T, Bi K, Yang R D . Preliminary discuss on relationship between geological background and tea quality in Guizhou[J]. Guizhou Agricultural Sciences, 2010,38(4):72-76.
[4] 彭益书, 陈蓉, 杨瑞东 , 等. 乌当区太子参环肽B含量及其与元素含量的相关性[J]. 西南农业学报, 2015,28(1):274-278.
[4] Peng Y S, Chen R, Yang R D , et al. Correlation among heterophyllin B content in Pseudostellaria heterophylla,stratum and some trace elements content in Wudang District[J]. Southwest China Journal of Agricultural Sciences, 2015,28(1):274-278.
[5] 彭益书, 陈蓉, 杨瑞东 , 等. 贵阳市乌当区太子参及其种植土壤中14种元素含量与道地性[J]. 贵州农业科学, 2014,42(11):109-113.
[5] Peng Y S, Chen R, Yang R D , et al. Genuineness of herbs and 14 elements contents in Pseudostellaria heterophylla and planting soil in Wudang District of Guiyang City[J]. Guizhou Agricultural Sciences, 2014,42(11):109-113.
[6] Birke M, Reimann C, Rauch U , et al. GEMAS:Cadmium distribution and its sources in agricultural and grazing land soil of Europe—Original data versus clrtransformed data[J]. Journal of Geochemical Exploration, 2016,173:13-30.
[7] Martin A P, Turnbull R E, Rattenbury M S , et al. The regional geochemical baseline soil survey of southern New Zealand:Design and initial interpretation[J]. Journal of Geochemical Exploration, 2016,167:70-82.
[8] 吴承龙, 程亮, 王成庭 , 等. 基于GIS的皖南山区茶叶种植适宜性评价[J]. 农业网络信息, 2012(2):27-32.
[8] Wu C L, Cheng L, Wang C T , et al. Research on suitability evaluation of cultivated land for tea based on GIS in south[J]. Agriculture Network Information, 2012(2):27-32.
[9] 周旭, 安裕伦, 杨光斌 , 等. RS、GIS支持下都匀毛尖茶种植适宜地评价[J]. 贵州农业科学, 2005,33(5):10-14.
[9] Zhou X, An Y L, Yang G B , et al. Evaluation on the suitable land of Duyun Maojian Tea planting based on RS and GIS[J]. Guizhou Agricultural Sciences, 2005,33(5):10-14.
[10] 宋星星, 毛艳玲, 邱龙霞 , 等. 基于GIS的长汀县茶园适宜性评价[J]. 江西农业大学学报, 2017,39(2):342-348.
[10] Song X X, Mao Y L, Qiu L X , et al. GIS-based suitability evaluation of tea garden in Changting County[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017,39(2):342-348.
[11] 尹娟, 王可耀 . 基于GIS的乐山市茶叶种植气候区划[J]. 现代农业科技, 2017(19):179-181.
[11] Yin J, Wang K Y . Tea growing climatezoning in Leshan City based on GIS[J]. Modern Agricultural Science and Technology, 2017(19):179-181.
[12] 张森, 陈健飞, 龚建周 . 面向对象分类的决策树方法探讨——以Landsat-8 OLI为例[J]. 测绘科学, 2016,41(6):117-121.
[12] Zhang S, Chen J F, Gong J Z . Object-oriented classification based on C5.0 algorithm[J]. Science of Surveying and Mapping, 2016,41(6):117-121.
[13] 苏腾飞 . 基于时间序列NDVI的河套平原农田分类方法[J]. 科技创新导报, 2014(25):202-203.
[13] Su T F . Classification method of farmland in Hetao Plain based on time series NDVI[J]. Science and Technology Innovation Herald, 2014(25):202-203.
[14] 韩东升 . 基于决策树的乡村遥感影像分类算法[J]. 中国科技纵横, 2015(21):24-24.
[14] Han D S . Rural remote sensing image classification based on decision tree[J]. China Science and Technology Panorama Magazine, 2015(21):24-24.
[15] 童成英, 何守阳, 丁虎 . 茶叶产地与品质的元素、同位素鉴别技术研究进展[J]. 生态学杂志, 2018,37(5):1574-1583.
[15] Tong C Y, He S Y, Ding H . Research progress of element and isotope identification technology for the origin and quality of tea[J]. Chinese Journal of Ecology, 2018,37(5):1574-1583.
[16] 徐涵秋, 张博博, 关华德 , 等. 南方红壤区林下水土流失的遥感判别——以福建省长汀县为例[J]. 地理科学, 2017(8):147-153.
[16] Xu H Q, Zhang B B, Guan H D , et al. Detection of soil erosion area under forest canopy in the red soil region of southern China using remote sensing techniques:Changting County,Fujian Province[J]. Scientia Geographica Sinica, 2017(8):147-153.
[17] 高琳, 龙怀玉, 刘鸣达 , 等. 农业地质背景与特色农作物品质相关性研究进展[J]. 土壤通报, 2011,42(5):1263-1267.
[17] Gao L, Long H Y, Liu M D , et al. Review on the relationship between agro-geological background and crop quality[J]. Chinese Journal of Soil Science, 2011,42(5):1263-1267.
[18] 毕坤 . 论贵州茶叶品质与地质环境关系[J]. 贵州地质, 1997,14(2):105-120.
[18] Bi K . On the relationship between tea quality and geological environments of Guizhou[J]. Guizhou Geology, 1997,14(2):105-120.
[1] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[2] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[3] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[11] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[14] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[15] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech