Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 220-227     DOI: 10.6046/gtzyyg.2020280
|
Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area
YUAN Qianying1(), MA Caihong1,2(), WEN Qi1,2, LI Xuemei3
1. College of Resources and Environment, Ningxia University, Yinchuan 750021, China
2. Key Laboratory of Resource Evaluation and Environmental Control in Ningxia (Central and Arab) Arid Areas, Yinchuan 750021, China
3. School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
Download: PDF(4124 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the MODIS13Q1,MODIS11Q2 data and national meteorological station monitoring data and using the methods of maximum value synthesis, the average two pixel model and partial correlation analysis, the authors analyzed the temporal and spatial variation trend of vegetation coverage in the growing season and the interaction of land surface temperature and soil moisture on vegetation growth. The results are as follows: ① From 2001 to 2018, the vegetation coverage of Liupanshan poverty-stricken area increased from 0.28 to 0.45, and showed a decreasing pattern from southeast to northwest. ② During the research period, there existed a trend of overall improvement and local degradation: the improved area accounted for 51.91%, the area without significant change accounted for 44.22%, and the degraded area accounted for 3.87%. ③ The growth of vegetation is closely related to the annual change of land surface temperature and soil moisture. There are three types of spatial correlation: positive correlation, negative correlation and reverse correlation, but the positive correlation is dominant. ④ The interaction analysis shows that the influence of soil moisture on vegetation growth is greater than that of land surface temperature. Soil moisture condition is the dominant factor affecting the vegetation growth in this area. The improvement of soil moisture condition is very important for the construction and restoration of ecological environment in the study area.

Keywords change of vegetation cover      growing season      partial correlation analysis      land surface temperature      soil moisture     
ZTFLH:  TP79  
Corresponding Authors: MA Caihong     E-mail: yuanqy166@163.com;mchyanni@163.com
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qianying YUAN
Caihong MA
Qi WEN
Xuemei LI
Cite this article:   
Qianying YUAN,Caihong MA,Qi WEN, et al. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020280     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/220
Fig.1  Study area
分类 覆盖度阈值/%
高覆盖 [60,100]
中覆盖 [45,60)
中低覆盖 [30,45)
低覆盖 [10,30)
荒漠 [0,10)
Tab.1  Classification standard of vegetation coverage
Fig.2  Annual changes of vegetation coverage in growing season in Liupanshan poverty area from 2001 to 2018
Fig.3  Spatial pattern of vegetation cover in growing season in Liupanshan poverty area in 2018
Fig.4  Vegetation coverage in growing season in Liupanshan poverty area
Fig.5  Standardized index of growing season vegetation coverage, land surface temperature and soil moisture in Liupanshan poverty area
Fig.6  Partial correlation between vegetation coverage and land surface temperature and soil moisture in 2018 growing season
Fig.7  Interaction of land surface temperature and soil moisture on vegetation coverage in 2018 growing season
类型 面积/
(106 hm2)
比例/
%
相关性
LST均值 土壤湿
度均值
LST正、土壤湿度正 7.14 43.04 0.47 0.59
LST正、土壤湿度负 2.45 14.74 0.51 -0.42
LST负、土壤湿度正 6.13 36.92 -0.45 0.71
LST负、土壤湿度负 0.88 5.28 -0.33 -0.4
Tab.2  Correlation of land surface temperature and soil humidity on vegetation coverage in 2018 growing season
[1] 王君, 杨晓梅, 隋立春, 等. 西安市1995—2016年植被覆盖度动态变化监测及景观格局分析[J]. 生态科学, 2019, 38(6):81-91.
[1] Wang J, Yang X M, Sui L C, et al. Dynamic change monitoring and landscape pattern analysis of vegetation coverage in Xi’an City from 1995 to 2016[J]. Ecological Science, 2019, 38(6):81-91.
[2] 张亮, 丁明军, 张华敏, 等. 1982—2015年长江流域植被覆盖度时空变化分析[J]. 自然资源学报, 2018, 33(12):2084-2097.
[2] Zhang L, Ding M J, Zhang H M, et al. Spatiotemporal variation of the vegetation coverage in Yangtze River basin during 1982—2015[J]. Journal of Natural Resources, 2018, 33(12):2084-2097.
[3] 阿多, 赵文吉, 宫兆宁, 等. 1981—2013华北平原气候时空变化及其对植被覆盖度的影响[J]. 生态学报, 2017, 37(2):576-592.
[3] A D, Zhao W J, Gong Z N, et al. Temporal analysis of climate change and its relationship with vegetation cover on the north china plain from 1981 to 2013[J]. Acta Ecologica Sinica, 2017, 37(2):576-592.
[4] 金凯. 中国植被覆盖时空变化及其与气候和人类活动的关系[D]. 西安:西北农林科技大学, 2019.
[4] Jin K. Spatio-temporal variations of vegetation cover and its relationships between climate change and human activities over China[D]. Xi’an:Northwest Agriculture and Forestry University, 2019.
[5] 张翀, 雷田旺, 宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报, 2018, 38(6):2128-2138.
[5] Zhang C, Lei T W, Song D X. Analysis of temporal and spatial characteristics of time lag correlation between the vegetation cover and soil moisture in the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(6):2128-2138.
[6] 翟雅倩, 张翀, 周旗, 等. 秦巴山区植被覆盖与土壤湿度时空变化特征及其相互关系[J]. 地球信息科学学报, 2018, 20(7):967-977.
doi: 10.12082/dqxxkx.2018.170597
[6] Zhai Y Q, Zhang C, Zhou Q, et al. Spatio-temporal variation and interrelationship of vegetation cover and soil moisture in Qinling-Daba Mountains[J]. Journal of Geo-information Science, 2018, 20(7):967-977.
[7] Meir I N. Desert ecosystems:Environment and producers[J]. Annual Review of Ecology & Systematics, 1973, 4(1):25-51.
[8] Yang L, Wylie B, Tieszen L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. northern and central Great Plains[J]. Remote Sensing of Environment, 1998, 65(1):25-37.
doi: 10.1016/S0034-4257(98)00012-1 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425798000121
[9] 赵建军. 阿帕拉契亚山植被动态变化及其对气候变化的响应研究[D]. 长春:东北师范大学, 2013.
[9] Zhao J J. The study of vegetation dynamic and responses to climate change along the Appalachian trail corridor[D]. Changchun:Northeast Normal University, 2013.
[10] 高振东. 西辽河流域植被覆盖度时空演变规律及其影响因素研究[D]. 沈阳:沈阳农业大学, 2015.
[10] Gao Z D. Study of spatial temporal evolution rule and influencial factors of vegetation coverage in West Liao River basin[D]. Shenyang:Shenyang Agricultural University, 2015.
[11] 贾文雄, 陈京华. 1982—2014年祁连山植被生长季NDVI变化及其对气候的响应[J]. 水土保持研究, 2018, 25(2):264-268.
[11] Jia W X, Chen J H. Variations of NDVI and its response to climate change in the growing season of vegetation in Qilianshan mountains from 1982 to 2014[J]. Research of Soil and Water Conservation, 2018, 25(2):264-268.
[12] 罗敏, 古丽·加帕尔, 郭浩, 等. 2000—2013年塔里木河流域生长季NDVI时空变化特征及其影响因素分析[J]. 自然资源学报, 2017, 32(1):50-63.
[12] Luo M, Jiapaer G, Guo H, et al. Spatial-temporal variation of growing-season NDVI and its responses to hydrothermal condition in the Tarim River basin from 2000 to 2013[J]. Journal of Natural Resources, 2017, 32(1):50-63.
[13] 杨延征, 赵鹏祥, 郝红科, 等. 基于SPOT-VGT NDVI的陕北植被覆盖时空变化[J]. 应用生态学报, 2012, 23(7):1897-1903.
[13] Yang Y Z, Zhao P X, Hao H K, et al. Spatiotemporal variation of vegetation in northern Shaanxi of northwest China based on SPOT-VGT NDVI[J]. Chinese Journal of Applied Ecology, 2012, 23(7):1897-1903.
[14] 庞静, 杜自强, 张霄羽. 新疆地区植被对水热条件的时滞响应[J]. 中国农业资源与区划, 2015, 36(7):82-88.
[14] Pang J, Du Z Q, Zhang X Y. Time -lagged response of vegetation to hydro-thermal factors in Xinjiang region[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015, 36(7):82-88.
[15] 李梦云, 黄方, 陈龙胤. 吉林省西部地区NDVI对降水量和土壤湿度的敏感性分析[J]. 东北师大学报(自然科学版), 2013, 45(4):141-146.
[15] Li M Y, Huang F, Chen L Y. Analysis of NDVI sensitivity to precipitation and soil moisture in western Jilin Province[J]. Journal of Northeast Normal University(Natural Science Edition), 2013, 45(4):141-146.
[16] 马雄伟, 赵庆志, 姚顽强. 黄土高原植被对气候变化的时滞响应及其时变特征[J]. 西安科技大学学报, 2020, 40(1):157-166.
[16] Ma X W, Zhao Q Z, Yao W Q. Time lags of vegetation to climate change and temporal characteristics in Loess Plateau[J]. Journal of Xi’an University of Science and Technology, 2020, 40(1):157-166.
[17] Pang G J, Wang X J, Yang M X. Using the NDVI to identify variations in,and responses of,vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 2016, 444,87-96.
doi: 10.1016/j.quaint.2016.08.038 url: https://linkinghub.elsevier.com/retrieve/pii/S1040618215302998
[18] 何航, 张勃, 侯启, 等. 1982—2015年中国北方归一化植被指数(NDVI)变化特征及对气候变化的响应[J]. 生态与农村环境学报, 2020, 36(1):70-80.
[18] He H, Zhang B, Hou Q, et al. Variation characteristic of NDVI and its response to climate change in northern China from 1982 to 2015[J]. Journal of Ecology and Rural Environment, 2020, 36(1):70-80.
[19] 黄悦悦, 杨东, 冯磊. 2000—2016年宁夏植被覆盖度的时空变化及其驱动力[J]. 生态学杂志, 2019, 38(8):2515-2523.
[19] Huang Y Y, Yang D, Feng L. Spatiotemporal variation in vegetation coverage and its driving forces in Ningxia during 2000—2016[J]. Chinese Journal of Ecology, 2019, 38(8):2515-2523.
[20] 赵鸿雁, 陈英, 周翼, 等. 甘肃中东部植被生长季NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2019, 42(6):1427-1435.
[20] Zhao H Y, Chen Y, Zhou Y, et al. Spatiotemporal variation of NDVI in vegetation growing season and its responses to climatic factors in mid and eastern Gansu Province from 2008 to 2016[J]. Arid Land Geography, 2019, 42(6):1427-1435.
[21] 代子俊, 赵霞, 李冠稳, 等. 基于GIMMS NDVI 3g.v1的近34年青海省植被生长季NDVI时空变化特征[J]. 草业科学, 2018, 35(4):713-725.
[21] Dai Z J, Zhao X, Li G W, et al. Spatial-temporal variations in NDVI in vegetation growing season in Qinghai based on GIMMS NDVI 3g.v1 in past 34 years[J]. Pratacultural Science, 2018, 35(4):713-725.
[22] 王海梅. 锡林郭勒地区气候变化规律与植被覆盖变化驱动机制研究[D]. 呼和浩特:内蒙古农业大学, 2009.
[22] Wang H M. Spatial temporal change of climate and driving mechanisms of vegetation cover change in Xilinguole grasslands[D]. Huhhot:Inner Mongolia Agricultural University, 2009.
[23] 杨瑞瑞, 易桂花, 张廷斌, 等. 2000—2015年若尔盖地区植被覆盖度变化及气候因子驱动分析[J]. 草业科学, 2018, 35(12):2822-2835.
[23] Yang R R, Yi G H, Zhang T B, et al. Vegetation coverage change and how it drives climatic factors in the Zoige region from 2000 to 2015[J]. Pratacultural Science, 2018, 35(12):2822-2835.
[24] 邓晨晖, 白红英, 高山, 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018, 33(3):425-438.
[24] Deng C H, Bai H Y, Gao S, et al. Spatial-temporal variation of the vegetation coverage in Qinling mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 2018, 33(3):425-438.
[25] 何云玲, 李同艳, 熊巧利, 等. 2000—2016年云南地区植被覆盖时空变化及其对水热因子的响应[J]. 生态学报, 2018, 38(24):8813-8821.
[25] He Y L, Li T Y, Xiong Q L, et al. Spatio-temporal patterns of vegetation coverage and response to hydrothermal factors in Yunnan Province,China[J]. Acta Ecologica Sinica, 2018, 38(24):8813-8821.
[26] 侯光雷, 张洪岩, 郭聃, 等. 长白山区植被生长季NDVI时空变化及其对气候因子敏感性[J]. 地理科学进展, 2012, 31(3):285-292.
doi: 10.11820/dlkxjz.2012.03.003
[26] Hou G L, Zhang H Y, Guo D, et al. Spatial-temporal variation of NDVI in the growing season and its sensitivity to climatic factors in Changbai mountains[J]. Progress in Geography, 2012, 31(3):285-292.
[27] 王伟, 阿里木·赛买提, 吉力力·阿不都外力, 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4):32-40.doi: 10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
[27] Wang W, Samat A, Abuduwaili J. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land and Resources, 2019, 31(4):32-40.doi: 10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
[28] 孟浩斌, 周启刚, 李明慧, 等. 基于MODIS像元尺度的三峡库区植被覆盖度变化的地形分布特征[J]. 长江流域资源与环境, 2020, 29(8):1790-1799.
[28] Meng H B, Zhou Q G, Li M H, et al. Topographic distribution characteristics of vegetation cover change in the Three Gorges Reservoir area based on MODIS pixel scale[J]. Resources and Environment in the Yangtze Basin, 2020, 29(8):1790-1799.
[29] 张永, 杨自辉, 王立, 等. 石羊河中游生长季植被覆盖对气候的响应[J]. 干旱区研究, 2018, 35(3):662-668.
[29] Zhang Y, Yang Z H, Wang L, et al. Response of vegetation coverage to climatic factors in the middle reaches of the Shiyang River in growing season[J]. Arid Zone Research, 2018, 35(3):662-668.
[30] 俱战省, 杨青森, 邢培茹. 1987—2015年嘉陵江源区植被覆盖度时空变化特征[J]. 地球与环境, 2020, 48(4):452-460.
[30] Ju Z S, Yang Q S, Xing P R. Spatial-temporal dynamics of the fractional vegetation coverage in the headwaters of the Jialing River from 1987 to 2015[J]. Earth and Environment, 2020, 48(4):452-460.
[31] 孙红, 田昕, 闫敏, 等. 内蒙古大兴安岭根河植被覆盖度动态变化及影响因素的分析[J]. 遥感技术与应用, 2018, 33(6):1159-1169.
[31] Sun H, Tian X, Yan M, et al. Analysis of dynamic changes of fractional vegetation coverage and influencing factors of the genhe in the Great Khingan of Inner Mongolia[J]. Remote Sensing Technology and Application, 2018, 33(6):1159-1169.
[32] 王静, 万红莲, 姚顺波. 生长季川陕不同地带植被覆盖对气候变化的时空响应[J]. 生态学报, 2019, 39(14):5218-5231.
[32] Wang J, Wan H L, Yao S B. Spatial and temporal response of vegetation cover to climate change in different zones of Sichuan-Shaanxi area during growing season[J]. Acta Ecologica Sinica, 2019, 39(14):5218-5231.
[33] 徐嘉昕, 房世波, 张廷斌, 等. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
[33] Xu J X, Fang S B, Zhang T B, et al. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land and Resources, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin[J]. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
[3] MA Junjun, WANG Chunlei, HUANG Xiaohong. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin[J]. Remote Sensing for Natural Resources, 2023, 35(1): 198-204.
[4] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[5] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[6] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[7] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[8] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[9] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[10] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[11] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[12] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[13] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[14] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[15] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech