Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 230-237     DOI: 10.6046/zrzyyg.2021058
|
Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index
ZHANG Qinrui1(), ZHAO Liangjun2(), LIN Guojun1, WAN Honglin3
1. Artificial Intelligence Key Laboratory of Sichuan Province, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
2. Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
3. Department of Water Conservancy, Hebei University of Water Resources and Electric Engineering, Cangzhou Technology Innovation Center of Remote Sensing and Smart Water, Cangzhou 061001, China
Download: PDF(3996 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Urban expansion is the main characteristic of Yibin City in recent years, and the study of its impacts on ecology is significant for urban development and ecological protection. To assess the impacts of urban expansion on the ecology more accurately, this study established an improved remote sensing ecological index (IRSEI) by using the impervious surface area index as the dryness index to replace the original building index. The IRSEI coupled the improved dryness index and the indices greatly influencing the ecology, such as greenness, humidity, and temperature. This study analyzed the IRSEI using principal component analysis and correlation and established an IRSEI-based ecological assessment model of the three-river (i.e., the Jinsha River, Minjiang River, and Yangtze River) confluence in Yibin City. Then, this study analyzed and assessed the ecological environment of the confluence in 2013—2020. The results are as follows. The IRSEI can more accurately reflect the negative impacts of the dryness index on the ecology of the confluence. It can concentrate more useful information in the first principal component than the RSEI and can better apply to the quality assessment of urban ecological environment. In 2013, the IRSEI of the confluence was 0.54, indicating the moderate ecological status overall. The reason is that the original vegetation was destroyed by serious urban expansion. In 2017, the IRSEI was 0.67. The greenness was significantly improved by the continuous advancement of returning farmland to forests and the restoration of urban ecology, which is the reason that the ecology has greatly improved in 2017 compared to 2013. In 2020, the IRSEI was 0.63. The greenness, humidity, and dryness in 2020 were roughly the same as those in 2013, while the temperature rose in 2020 compared to 2017 due to the heat island effect induced by urban expansion. This is the reason for the slight decline in the ecological level in 2020.

Keywords improved remote sensing ecological index (IRSEI)      principal component analysis      correlation      three-river confluence in Yibin City      ecological assessment     
ZTFLH:  TP79  
Corresponding Authors: ZHAO Liangjun     E-mail: 1029765315@qq.com;149189602@qq.com
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qinrui ZHANG
Liangjun ZHAO
Guojun LIN
Honglin WAN
Cite this article:   
Qinrui ZHANG,Liangjun ZHAO,Guojun LIN, et al. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021058     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/230

指标
2013年 2017年 2020年
PCA1 PCA2 PCA3 PCA4 PCA1 PCA2 PCA3 PCA4 PCA1 PCA2 PCA3 PCA4
NDVI 0.79 0.37 -0.38 0.31 0.74 0.31 -0.48 0.36 0.76 0.32 -0.44 0.36
WET 0.04 -0.16 0.59 0.79 0.06 -0.13 0.60 0.78 0.07 -0.13 0.64 0.76
LST -0.32 0.92 0.25 0.02 -0.29 0.94 0.17 0.04 -0.22 0.94 0.26 -0.04
NDISSI -0.52 -0.01 -0.67 0.52 -0.60 -0.10 -0.61 0.50 -0.60 0.04 -0.58 0.55
特征值 0.04 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.01 0.00 0.00
特征值贡献率/% 88.18 9.39 2.24 0.19 89.25 8.28 2.02 0.45 88.75 8.60 2.27 0.39
Tab.1  Results of principal component analysis

指标
2013年 2017年 2020年
NDVI WET LST NDISSI IRSEI NDVI WET LST NDISSI IRSEI NDVI WET LST NDISSI IRSEI
NDVI 1.00 0.24 -0.62 -0.95 0.99 1.00 0.37 -0.63 -0.96 0.99 1.00 0.39 -0.51 -0.96 0.98
WET 0.24 1.00 -0.49 -0.49 0.37 0.37 1.00 -0.49 -0.53 0.47 0.39 1.00 -0.45 -0.58 0.50
LST -0.62 -0.49 1.00 0.69 -0.72 -0.63 -0.49 1.00 0.66 -0.72 -0.51 -0.45 1.00 0.60 -0.62
NDISSI -0.95 -0.49 0.69 1.00 -0.98 -0.96 -0.53 0.66 1.00 -0.99 -0.96 -0.58 0.60 1.00 -0.99
IRSEI 0.99 0.37 -0.72 -0.98 1.00 0.99 0.47 -0.72 -0.99 1.00 0.98 0.50 -0.62 -0.99 1.00
平均相关度 0.70 0.40 0.63 0.78 0.76 0.74 0.47 0.62 0.79 0.79 0.71 0.48 0.54 0.78 0.77
Tab.2  Statistic of correlation between each index and IRSEI index
Fig.1  Three dimensional scatter plots of IRSEI and each factor
Fig.2  Urban expansion of the study area from 2013 to 2020
年份 NDVI WET LST/℃ NDISSI IRSEI
2013年 0.41 -0.03 23.64 -0.44 0.54
2017年 0.55 -0.04 28.77 -0.47 0.67
2020年 0.55 -0.03 24.07 -0.47 0.63
Tab.3  Statistical mean value of index and IRSEI in each year
Fig.3  Ecological area of three rivers confluence area in different periods
Fig.4  Change detection of IRSEI in study area
[1] Pauleit S, Ennos R, Golding Y. Modeling the environmental impacts of urban land use and land cover change:A study in Merseyside,UK[J]. Landscape and Urban Planning, 2005, 71(2-4):295-310.
doi: 10.1016/S0169-2046(04)00083-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204604000830
[2] Musse M A, Barona D A, Rodriguez L M S. Urban environmental quality assessment using remote sensing and census data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71(71):95-108.
doi: 10.1016/j.jag.2018.05.010 url: https://linkinghub.elsevier.com/retrieve/pii/S030324341830463X
[3] 王瑶, 宫辉力, 李小娟. 基于GIS的北京市生态环境质量监测与分析[J]. 自然资源遥感, 2008, 20(1):94-99.doi: 10.6046/gtzyyg.2008.01.21.
doi: 10.6046/gtzyyg.2008.01.21
[3] Wang Y, Gong H L, Li X J. The monitoring and analysis of ecological environment quality of Beijing based on GIS[J]. Remote Sensing for Land and Resources, 2008, 20(1):94-99.doi: 10.6046/gtzyyg.2008.01.21.
doi: 10.6046/gtzyyg.2008.01.21
[4] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
[4] Xu H Q, A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.
[5] 徐志刚, 郑鸿瑞, 戴晨曦, 等. 永定客家土楼世界遗产地土地覆盖与生态变化遥感评价[J]. 自然资源遥感, 2018, 30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14.
doi: 10.6046/gtzyyg.2018.01.14
[5] Xu Z G, Zheng H R, Dai C X, et al. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Remote Sensing for Land and Resources, 2018, 30(1):102-108.doi: 10.6046/gtzyyg.2018.01.14.
doi: 10.6046/gtzyyg.2018.01.14
[6] 木哈代思·艾日肯, 张飞, 刘康, 等. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 自然资源遥感, 2020, 32(4):209-218.doi: 10.6046/gtzyyg.2020.04.26.
doi: 10.6046/gtzyyg.2020.04.26
[6] Muhadaisi A, Zhang F, Liu K, et al. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land and Resources, 2020, 32(4):209-218.doi: 10.6046/gtzyyg.2020.04.26.
doi: 10.6046/gtzyyg.2020.04.26
[7] 罗春, 刘辉, 戚陆越. 基于遥感指数的生态变化评估——以常宁市为例[J]. 自然资源遥感, 2014, 26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23.
doi: 10.6046/gtzyyg.2014.04.23
[7] Luo C, Liu H, Qi L Y. Ecological changes assessment based on remote sensing indices: A case study of Changning City[J]. Remote Sensing for Land and Resources, 2014, 26(4):145-150.doi: 10.6046/gtzyyg.2014.04.23.
doi: 10.6046/gtzyyg.2014.04.23
[8] Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14):4269-4276.
doi: 10.1080/01431160802039957 url: https://www.tandfonline.com/doi/full/10.1080/01431160802039957
[9] 徐涵秋. 一种基于指数的新型遥感建筑用地指数及其生态环境意义[J]. 遥感技术与应用, 2007, 22(3):301-308.
[9] Xu H Q. A new index-based built-up index(IBI) and its eco-environmental significance[J]. Remote Sensing Technology and Application, 2007, 22(3):301-308.
[10] Xu H Q. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index(NDISI)[J]. Photogrammetric Engineering and Remote Sensing, 2010, 76(5):557-565.
doi: 10.14358/PERS.76.5.557 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=76&issue=5&spage=557
[11] Rikimaru A, Roy P S, Miyatake S. Tropical forest cover density mapping[J]. Tropical Ecology, 2002, 43(1):39-47.
[12] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(12/14):3025-3033.
doi: 10.1080/01431160600589179 url: https://www.tandfonline.com/doi/full/10.1080/01431160600589179
[13] 程志峰, 何祺胜. 基于RSEI的苏锡常城市群生态环境遥感评价[J]. 遥感技术与应用, 2019, 34(3):531-539.
[13] Cheng Z F, He Q S. Remote sensing evaluation of the ecological environment of Su-Xi-Chang city group based on remote sensing ecological index (RSEI)[J]. Remote Sensing Technology and Application, 2019, 34(3):531-539.
[14] Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11):2674-2677.
doi: 10.1109/TGRS.2003.818464 url: http://ieeexplore.ieee.org/document/1245255/
[15] 覃志豪, 李文娟, 徐斌, 等. 2004, 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 自然资源遥感, 16(3):28-32, 36,41.doi: 10.6046/gtzyyg.2004.03.07.
doi: 10.6046/gtzyyg.2004.03.07
[15] Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land and Resources, 2004, 16(3):28-32,36,41.doi: 10.6046/gtzyyg.2004.03.07.
doi: 10.6046/gtzyyg.2004.03.07
[16] 杨永健. 基于遥感生态指数的生态质量变化分析[D]. 西安:长安大学, 2019.
[16] Yang Y J. Ecological quality assessment based on remote sensing ecological index:A case study of Fujian Province[D]. Xi’an:Chang’an University, 2019.
[17] Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003, 24(3):583-594.
doi: 10.1080/01431160304987 url: https://www.tandfonline.com/doi/full/10.1080/01431160304987
[18] 徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20(5):1270-1289.
[18] Xu H Q, Wang M Y. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 2016, 20(5):1270-1289.
[19] 刘畅, 杨康, 程亮, 等. Landsat8不透水面遥感信息提取方法对比[J]. 自然资源遥感, 2019, 31(3):148-156.doi: 10.6046/gtzyyg.2019.03.19.
doi: 10.6046/gtzyyg.2019.03.19
[19] Liu C, Yang K, Cheng L, et al. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land and Resources, 2019, 31(3):148-156.doi: 10.6046/gtzyyg.2019.03.19.
doi: 10.6046/gtzyyg.2019.03.19
[20] 林冬凤, 徐涵秋. 厦门城市不透水面及其热环境效应的遥感分析[J]. 亚热带资源与环境学报, 2013, 8(3):78-84.
[20] Lin D F, Xu H Q. Urban impervious surface and its effects on thermal environments in Xiamen:An analysis based on remote sensing technology[J]. Journal of Subtropical Resources and Environment, 2013, 8(3):78-84.
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[3] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[4] LI Jingzhi, WANG Miao, FENG Wenjing, LI Bin. The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China[J]. Remote Sensing for Natural Resources, 2022, 34(3): 207-217.
[5] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[6] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[7] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[8] WANG Juanjuan, WU Zhaopeng, WANG Shanshan, YIN Huihui. An analysis of the pattern of land-use conflicts in valley oases in arid areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 243-251.
[9] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[10] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[11] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[12] GAO Junhua, LIU Shasha, YANG Jinzhong, ZHAO Mingpeng, LIU Xinyue, ZOU Lianxue. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
[13] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[14] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[15] YING Kui, LI Xudong, CHENG Dongya. Remote sensing assessment of ecological environment quality in karst trough basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 173-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech