Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 184-195     DOI: 10.6046/zrzyyg.2021320
|
Extraction of paddy fields using multi-temporal Sentinel-1 images
ZHA Dongping1,2(), CAI Haisheng1(), ZHANG Xueling1, HE Qinggang1
1. Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
2. Jiangxi Tourism and Commerce Vocational College, Nanchang 330100, China
Download: PDF(7594 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The monitoring and information extraction of paddy fields using remote sensing techniques is an important means for modern agricultural management. However, it is difficult to obtain effective optical monitoring data of south China due to the frequent cloudy and rainy weather in spring and summer in this area. To accurately extract information on paddy fields in areas subject to frequent cloudy and rainy weather, this study investigated the paddy fields in Jiangxiang Town in Nanchang County, Jiangxi Province, using multi-temporal Sentinel-1 SAR data as the data source. Specifically, this study calculated the J-M distance between paddy fields and other land types in different phenological periods, analyzed the changes in the distance based on the backscattering coefficients of various land types in key phenological periods, and then obtained the best phenological images for the information extraction of paddy fields. Afterward, this study conducted ground object classification using methods such as random forest, maximum likelihood, support vector machine, and neural network and then compared and verified the classification accuracy. The results are as follows. The combined SAR data of the different stages including booting stage (June 14), trefeil stage (April 21), transplantion period (May 3), and transplanting peried of second season late rice (July 26) is the optimal temporal combination for the information extraction of paddy fields. Higher classification accuracy of ground objects in the study area can be obtained using the random forest method, with overall classification accuracy of up to 0.943 and a Kappa coefficient of 0.932. This study conducted the mapping of paddy fields in areas with frequent cloudy and rainy weather using SAR data and will provide important references for the temporal selection and classification.

Keywords remote sensing and monitoring      information extraction      SAR      Sentinel-1     
ZTFLH:  TP79  
Corresponding Authors: CAI Haisheng     E-mail: 345914421@qq.com;chs@jxau.edu.cn
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dongping ZHA
Haisheng CAI
Xueling ZHANG
Qinggang HE
Cite this article:   
Dongping ZHA,Haisheng CAI,Xueling ZHANG, et al. Extraction of paddy fields using multi-temporal Sentinel-1 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 184-195.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021320     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/184
Fig.1  The location of research area
Fig.2  Multi-temporal Sentinel-1 data processing method
Fig.3  Flight trajectory map of UAV
Fig.4  Video screenshot of UAV
Fig.5  Sample points distribution map
Fig.6  Random forest training process
极化 4月9日 4月21日 5月3日 5月15日 6月2日 6月14日 7月8日 7月26日
VV -10.34 -12.23 -10.82 -9.63 -10.65 -11.96 -9.64 -11.47
VH -18.82 -19.92 -20.44 -19.63 -17.98 -19.36 -18.03 -17.39
Tab.1  Average backscattering coefficient of paddy field in different time-phase(dB)
Fig.7  Average backscattering coefficient of paddy field in different time-phase
地类 4月9日 4月21日 5月3日 5月15日 6月2日 6月14日 7月8日 7月26日
莲田 -16.02 -15.14 -12.46 -11.70 -9.27 -7.84 -11.77 -6.95
林地 -9.58 -8.88 -9.70 -8.25 -7.96 -8.43 -8.21 -8.53
人工表面 -7.46 -5.20 -7.61 -5.37 -5.37 -6.75 -5.47 -6.68
水体 -19.42 -18.26 -18.18 -20.20 -17.47 -19.11 -20.35 -18.95
水稻田 -10.34 -12.23 -10.82 -9.63 -10.65 -11.96 -9.64 -11.47
湿地 -11.20 -10.08 -10.99 -9.34 -8.94 -8.50 -18.98 -20.85
Tab.2  Backscattering coefficients of VV polarized objects in different time-phase(dB)
地类 4月9日 4月21日 5月3日 5月15日 6月2日 6月14日 7月8日 7月26日
莲田 -22.27 -21.68 -19.78 -20.08 -16.88 -15.82 -16.91 -14.26
林地 -15.59 -15.01 -16.43 -14.92 -14.02 -14.72 -14.01 -14.98
人工表面 -16.07 -15.04 -16.07 -14.98 -14.34 -15.28 -14.36 -15.35
水体 -25.92 -25.32 -24.34 -25.02 -23.91 -24.28 -24.03 -25.52
水稻田 -18.82 -19.92 -20.44 -19.63 -17.98 -19.36 -18.03 -17.39
湿地 -17.27 -15.42 -16.74 -14.96 -14.30 -14.90 -24.79 -26.81
Tab.3  Backscattering coefficients of VH polarized objects in different time-phase(dB)
Fig.8  Backscattering coefficient diagrams of VV polarized objects in different time-phase
Fig.9  Box diagram of VV scattering coefficient for different time-phase data
Fig.10  Backscattering coefficient diagrams of VH polarized objects in different time-phase
Fig.11  Box diagram of VH scattering coefficient for different time-phase data
地类 水稻田
4月9日 4月21日 5月3日 5月15日 6月2日 6月14日 7月8日 7月26日
莲田 1.069 0.516 0.527 0.278 0.078 0.899 1.001 1.455
林地 0.817 1.236 1.264 1.280 1.251 1.390 1.173 1.219
人工表面 0.455 0.915 0.715 0.879 0.857 1.093 0.995 0.930
水体 1.267 1.106 1.318 1.595 1.069 1.604 1.207 1.673
湿地 1.575 0.943 1.113 1.174 1.103 0.536 1.187 1.998
Tab.4  Single-phase data J-M value between paddy filed and other land types
时相数据组合 类型 莲田 林地 人工表面 水体 湿地
(VV+VH)6.14+(VV/VH)6.14 水稻田 1.305 1.646 1.523 1.599 1.541
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)4.09 水稻田 1.644 1.841 1.672 1.902 1.743
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)4.21 水稻田 1.501 1.914 1.786 1.747 1.852
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)5.03 水稻田 1.635 1.952 1.743 1.827 1.919
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)5.15 水稻田 1.606 1.914 1.713 1.817 1.891
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)6.02 水稻田 1.493 1.840 1.659 1.765 1.767
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)7.08 水稻田 1.524 1.798 1.665 1.778 1.966
(VV+VH)6.14+(VV/VH)6.14+(VV+VH)7.26 水稻田 1.675 1.858 1.682 1.954 1.998
Tab.5  Multi-temporal data J-M value between paddy field and other land types
类型 莲田 林地 人工表面 水体 湿地
J-M距离 1.832 1.979 1.890 1.975 1.999
Tab.6  J-M value between paddy field and other land types
Fig.12  Classification results before time phase optimization
分类器 准确率(P) 召回率(R) F指数(F) 总体精度(A)
随机森林 0.914 0.960 0.937 0.937
最大似然法 0.913 0.950 0.931 0.927
支持向量机 0.896 0.950 0.922 0.933
神经网络 0.742 0.930 0.825 0.770
Tab.7  Accuracy comparison of classification results before time phase optimization
Fig.13  Classification results after time phase optimization
分类器 准确率(P) 召回率(R) F指数(F) 总体精度(A)
随机森林 0.913 0.950 0.931 0.943
最大似然法 0.915 0.970 0.942 0.930
支持向量机 0.862 0.970 0.913 0.923
神经网络 0.936 0.970 0.953 0.907
Tab.8  Accuracy comparison of classification results after time phase optimization
[1] Lu Z, Wang D Q, Deng Z D, et al. Application of red edge band in remote sensing extraction of surface water body:A case study based on GF-6 WFV data in arid area[J]. Hydrology Research, 2021, 52(6):1526-1541.
doi: 10.2166/nh.2021.050 url: https://iwaponline.com/hr/article/52/6/1526/83254/Application-of-red-edge-band-in-remote-sensing
[2] 吴炳方, 张淼, 曾红伟, 等. 全球农情遥感速报系统20年[J]. 遥感学报, 2019, 23(6):1053-1063.
[2] Wu B F, Zhang M, Zeng H W, et al. Twenty years of crop watch:Progress and prospect[J]. Journal of Remote Sensing, 2019, 23(6):1053-1063.
[3] 杨知. 基于极化SAR的水稻物候期监测与参数反演研究[D]. 北京: 中国科学院大学, 2017.
[3] Yang Z. Rice phenology estimation and parameter retrieval based on polarimetric synthetic aperture radar[D]. Beijing: The University of Chinese Academy of Sciences, 2017.
[4] Perros N, Kalivas D, Giovos R. Spatial analysis of agronomic data and UAV imagery for rice yield estimation[J]. Agriculture, 2021, 11(9):809.
doi: 10.3390/agriculture11090809 url: https://www.mdpi.com/2077-0472/11/9/809
[5] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748-767.
[5] Chen Z X, Ren J Q, Tang H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5):748-767.
[6] 陈怀亮, 李颖, 张红卫. 农作物长势遥感监测业务化应用与研究进展[J]. 气象与环境科学, 2015, 38(1):95-102.
[6] Chen H L, Li Y, Zhang H W. Operational application and research review of crop growth monitoring with remote sensing[J]. Meteorological and Environmental Sciences, 2015, 38(1):95-102.
[7] Zhu L H, Liu X N, Wu L, et al. Detection of paddy rice cropping systems in southern China with time series Landsat images and phenology-based algorithms[J]. GIScience & Remote Sensing, 2021, 58(5):1-23.
[8] Cao J J, Cai X L, Tan J W, et al. Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system,Southern China,from 1988-2017[J]. International Journal of Remote Sensing, 2021, 42(4):1556-1576.
doi: 10.1080/01431161.2020.1841321 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1841321
[9] Li R Y, Xu M Q, Chen Z Y, et al. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data:The comparison of a random-forest-based model and a decision-rule-based model[J]. Soil and Tillage Research, 2021, 206:104838.
doi: 10.1016/j.still.2020.104838 url: https://linkinghub.elsevier.com/retrieve/pii/S0167198720306206
[10] Chandna P, Mondal S. Analyzing multi-year rice-fallow dynamics in Odisha using multi-temporal Landsat-8 OLI and Sentinel-1 Data[J]. GIScience & Remote Sensing, 2020, 57(4):431-449.
[11] 杨辉山, 谢萍. 华南地区季度性全覆盖卫星影像获取方案优化[J]. 测绘与空间地理信息, 2019, 42(5):159-162.
[11] Yang H S, Xie P. Optimized solution of the high frequency and full coverage of satellite images acquisition in southern China[J]. Geomatics & Spatial Information Technology, 2019, 42(5):159-162.
[12] Gasnier N, Denis L, Fjrtoft R, et al. Narrow river extraction from SAR images using exogenous information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5720-5734.
doi: 10.1109/JSTARS.2021.3083413 url: https://ieeexplore.ieee.org/document/9440665/
[13] Chang L, Chen Y T, Wang J H, et al. Rice-field mapping with sentinel-1A SAR time-series data[J]. Remote Sensing, 2021, 13(1):103.
doi: 10.3390/rs13010103 url: https://www.mdpi.com/2072-4292/13/1/103
[14] Wu X X, Washaya P, Liu L, et al. Rice yield estimation based on spaceborne SAR:A review from 1988 to 2018[J]. IEEE Access, 2020(8):157462-157469.
[15] Son N T, Chen C F, Chen C R, et al. A phenological object-based approach for rice crop classification using time-series Sentinel-1 synthetic aperture Radar (SAR) data in Taiwan[J]. International Journal of Remote Sensing, 2021, 42(7):2722-2739.
doi: 10.1080/01431161.2020.1862440 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1862440
[16] Graman M, Kaliaperumal R, Pazhanivelan S, et al. Rice area estimation using parameterized classification of sentinel 1A SAR data[J]. ISPRS - International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2019, XLII-3/W6:141-147.
[17] Zhu H L, Wang W Y, Leung R. SAR target classification based on Radar image luminance analysis by deep learning[J]. IEEE Sensors Letters, 2020, 4(3):1-4.
[18] Bianchi F, Espeseth M, Borch N. Large-scale detection and categorization of oil spills from SAR images with deep learning[J]. Remote Sensing, 2020, 12(14):2260.
doi: 10.3390/rs12142260 url: https://www.mdpi.com/2072-4292/12/14/2260
[19] 邓刚, 唐志光, 李朝奎, 等. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2):177-185.doi: 10.6046/gtzyyg.2020.02.23.
doi: 10.6046/gtzyyg.2020.02.23
[19] Deng G, Tang Z G, Li C K, et al. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land and Resources, 2020, 32(2):177-185.doi: 10.6046/gtzyyg.2020.02.23.
doi: 10.6046/gtzyyg.2020.02.23
[20] 张悦琦, 李荣平, 穆西晗, 等. 基于多时相GF-6遥感影像的水稻种植面积提取[J]. 农业工程学报, 2021, 37(17):189-196.
[20] Li Y Q, Li R P, Mu X H, et al. Extraction of paddy rice planting areas based on multi-temporal GF-6 remote sensing image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):189-196.
[21] Woodhouse I. Introduction to microwave remote sensing[M]. USA: CRC Press, 2017:157-158.
[22] Xu Z. Wavelength-resolution SAR speckle model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
[23] Hu C B, Laurent L F, Kuang G Y. Ship discrimination using polarimetric SAR data and coherent time-frequency analysis[J]. Remote Sensing, 2013, 5(12):6899-6920.
doi: 10.3390/rs5126899 url: http://www.mdpi.com/2072-4292/5/12/6899
[24] Luo Y J, Zhao Y S, Li X W, et al. Research and application of multi-angle polarization characteristics of water body mirror reflection[J]. Science in China(Series D:Earth Sciences), 2007, 50(6):946-952.
[25] Jang J W, Kim T Y, Lim S B. RF Interference analysis and verification in the synthetic aperture Radar satellite system[J]. Aerospace Engineering and Technology, 2009, 8(1):187-196.
[26] 吴琳琳, 李晓燕, 毛德华, 等. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1):127-134.doi: 10.6046/zrzyyg.2021061.
doi: 10.6046/zrzyyg.2021061
[26] Wu L L, Li X Y, Mao D H, et al. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1):127-134.doi: 10.6046/zrzyyg.2021061.
doi: 10.6046/zrzyyg.2021061
[27] 桂预风, 李振平, 万爽, 等. 收敛性随机森林模型及其遥感应用[J]. 数学的实践与认识, 2015, 45(18):207-212.
[27] Gui Y F, Li Z P, Wan S, et al. Convergent random forests model and its application in remote sensing[J]. Mathematics in Practice and Theory, 2015, 45(18):207-212.
[28] 吕岚. 基于随机森林的快速兴趣点检测[J]. 自动化技术与应用, 2016, 35(9):95-100.
[28] Lyu L. A fast interest point detector based on random forest[J]. Techniques of Automation and Applications, 2016, 35(9):95-100.
[29] 韩冰冰, 陈圣波, 曾庆鸿, 等. 基于J-M距离的多时相Sentinel-1农作物分类[J]. 科学技术与工程, 2020, 20(17):6977-6982.
[29] Han B B, Chen S B, Zeng Q H, et al. Time-series classification of Sentinel-1 data based on J-M distance[J] Science Technology and Engineering, 2020, 20(17):6977-6982.
[30] 刘警鉴, 李洪忠, 华璀, 等. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.
doi: 10.6046/gtzyyg.2020.01.26
[30] Liu J J, Li H Z, Hua C, et al. Extraction of early paddy rice area in Lingao county based on sentinel-1A data[J]. Remote Sensing for Land and Resources, 2020, 32(1):191-199.doi: 10.6046/gtzyyg.2020.01.26.
doi: 10.6046/gtzyyg.2020.01.26
[31] 马腾耀, 肖鹏峰, 张学良, 等. 基于特征优选的GF-3全极化数据积雪识别[J]. 遥感技术与应用, 2020, 35(6):1292-1302.
[31] Ma T Y, Xiao P F, Zhang X L, et al. Recognition of snow cover based on features selection in GF-3 fully polarimetric data[J]. Remote Sensing Technology and Application, 2020, 35(6):1292-1302.
[32] 张颖, 高倩倩. 基于随机森林分类算法的巢湖水质评价[J]. 环境工程学报, 2016, 10(2):992-998.
[32] Zhang Y, Gao Q Q. Water quality evaluation of Chaohu Lake based on random forest method[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):992-998.
[1] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[2] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[3] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[4] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[5] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[6] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[7] HU Feng, LI Xue, ZUO Jin, SONG Shanhai, TANG Hongxiang, GU Xiaoping. Remote sensing identification and spatial distribution of dam areas with an area over 33.33 hm2 in Guizhou Province, China[J]. Remote Sensing for Natural Resources, 2023, 35(2): 287-294.
[8] LIANG Xiya, WANG Juanle, LI Pengfei, DAVAADORJ Davaasuren. GF-1 images-based information extraction of natural roads in arid and semi-arid regions of the Mongolian Plateau: A case study of Gurvantes Soum, Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 122-131.
[9] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[10] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[11] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[12] FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence[J]. Remote Sensing for Natural Resources, 2023, 35(1): 99-106.
[13] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[14] HE Binfang, YAO Yun, FENG Yan, LIU Huimin, DAI Juan. Sentinel-1A based flood inundation monitoring in Anhui Province during the plum rain period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1): 140-147.
[15] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech