Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 292-301     DOI: 10.6046/zrzyyg.2022190
Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region
JIANG Decai1,2,3(), ZHENG Xiangxiang2,3,4, WANG Ning3, XIAO Chunlei3(), ZHU Zhenzhou3
1. Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
2. University of Chinese Academy of Sciences,Beijing 100049,China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083,China
4. Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
Download: PDF(8483 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

In the Pearl River Delta (PRD) region, widespread surface water and vegetation are liable to cause interferometric synthetic aperture Radar (InSAR) interference decoherence, and the cloudy, foggy, rainy, and humid climates frequently cause severe atmospheric delay noise in InSAR data. Accordingly, targeting the Longgang District of Shenzhen City in the southeastern PRD, this study generated the connection graph of interference image pairs using the small baseline subset and InSAR (SBAS InSAR) technique based on interference coherence optimization. This study also obtained the surface deformation information of Longgang District from September 2019 to November 2020 based on 35 scenes of Sentinel-1A images. It then compared the surface deformation information with the inversion results obtained using the persistent scatterer InSAR (PS InSAR) technique. Finally, this study deduced the causes of surface deformation. The results are as follows: ① The inversion results of SBAS InSAR and PS InSAR yielded almost the same surface deformation fields. SBAS InSAR exhibited a much higher coherent point density than PS InSAR in the region with high-amplitude deformation. This indicates that the SBAS InSAR based on the optimal interference coherence can yield accurate and reliable inversion results, enjoying more advantages in the inversion for a complete deformation field. ② The primary causes of surface deformation in Longgang District and its surrounding areas include unstable Karst collapse or slope triggered by continuous heavy rainfall, the changes in the underground hydrogeological environment caused by industrial mining and drainage, the subsidence of mining gob induced by underground construction, and static foundation load imposed by new high-rise buildings. The technical route of this study can provide a reference for the automation and engineering application of InSAR in the early identification of geological hazards in the PRD region.

Keywords interference coherence optimization      Pearl River Delta      Longgang District      InSAR     
ZTFLH:  TP237  
Issue Date: 19 September 2023
E-mail this article
E-mail Alert
Articles by authors
Xiangxiang ZHENG
Chunlei XIAO
Zhenzhou ZHU
Cite this article:   
Decai JIANG,Xiangxiang ZHENG,Ning WANG, et al. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
URL:     OR
Fig.1  Geographical location of the study area
ID 成像日期 天气状况 ID 成像日期 天气状况 ID 成像日期 天气状况
1 20190905 大雨转雷阵雨 13 20200127 多云 25 20200713 多云转晴
2 20190917 雷阵雨 14 20200208 多云 26 20200725 阴转多云
3 20190929 15 20200303 多云转小雨 27 20200806 阴转阵雨
4 20191011 晴转多云 16 20200315 多云 28 20200818 中雨转暴雨
5 20191023 多云 17 20200327 多云转雷阵雨 29 20200830 暴雨转多云
6 20191104 18 20200420 阴转多云 30 20200911 小雨转雷阵雨
7 20191116 多云 19 20200502 多云 21 20200923 阴转雷阵雨
8 20191128 多云 20 20200514 多云 32 20201005
9 20191210 21 20200526 大雨转阵雨 33 20201017 多云
10 20191222 多云 22 20200607 暴雨 34 20201029 阴转多云
11 20200103 阴转多云 23 20200619 阴转晴 35 20201110 阴转多云
12 20200115 多云 24 20200701 大雨转雷阵雨
Tab.1  Weather conditions in Longgang District on Sentinel-1A imaging date
Fig.2  Overall technology and method flow
序号 ID1 ID2 相干均值 构连接图 序号 ID1 ID2 相干均值 构连接图 序号 ID1 ID2 相干均值 构连接图
1 12 13 184.15 36 9 13 162.93 71 24 26 158.33
6 5 6 173.33 41 28 29 162.10 76 31 33 157.93
11 11 12 171.34 46 14 18 161.52 81 19 24 157.43
16 10 13 168.49 51 17 19 160.50 86 8 14 156.96
21 16 17 166.98 56 7 13 159.51 91 10 15 156.21
26 29 30 165.00 61 10 16 159.00 96 6 10 155.59
31 10 14 164.06 66 6 11 158.71 101 6 12 155.01
Tab.2  Average values of ROI coherence graph arranged in descending order
序号 去平干涉图 序号 去平干涉图 序号 去平干涉图 序号 去平干涉图 序号 去平干涉图
1 21 41 61 81
6 26 46 66 84
11 31 51 71 20190905
16 36 56 76
Tab.3  Flattening interferogram in connection diagram
Fig.3  Connection diagram of the interferogram pairs
Fig.4  SBAS InSAR surface deformation field from September 2019 to November 2020 in the study area
Fig.5  PS InSAR surface deformation field from September 2019 to November 2020 in the study area
序号 位置 经度/(°) 纬度/(°) 形变速率/
1 塘实公司 114.124 22.789 -30.2
2 仙湖山庄 114.168 22.556 -29.7
3 深圳市天地东建
114.282 22.583 -27.5
4 坪山区中心广场 114.344 22.703 -26.2
5 龙岗街道龙园路 114.248 22.724 -31.5
6 大围工业区 114.212 22.711 -21.7
7 红棉四路 114.206 22.672 -20.9
8 腾龙工业区 114.080 22.718 -21.4
9 神力工业园 114.052 22.679 -20.6
Tab.4  Location and deformation rate of subsidence zone
序号 SBAS InSAR PS InSAR Google Earth影像 序号 SBAS InSAR PS InSAR Google Earth影像
1 6
2 7
3 8
4 9
Tab.5  Comparison of inversion results of SBAS and PS InSAR in major subsidence zones with their images
序号 位置 沉降带各沉降漏斗位置 地质岩性和地质灾害易发类型 结构构造
1 塘实公司 横塘工业区南200 m的泥料搅拌厂; 凤凰钓鱼场南边的新建工厂 以砂岩-凝灰质粉砂岩为主,间有细砂岩-页岩 砂状结构-火山、沉积碎屑结构-泥质结构,层状构造
2 仙湖山庄 仙湖山庄别墅区; 宠物浩园北边 以砂质砾-砂-粉砂-泥为主,间有碳质页岩-石英砂岩 泥质结构-砂状结构,层状构造
3 深圳市天地东建混凝土有限公司 深圳市天地东建混凝土有限公司 以砂岩-碳质页岩为主 砂状结构-泥质结构,层状构造
4 坪山区中心广场 燕子岭东北边地铁4号线; 坪山区中心广场; 坪山游泳馆东边的中国石化加油站; 在建地铁16号线深圳开放大学附近 以坪山岩体(花岗岩类)为主,间有砂岩-泥岩 细粒结构-中粒结构-砂状结构-泥质结构,块状构造为主、间有层状构造
5 龙岗街道龙园路 龙岗街道龙园路; 龙城大道与在建的地铁16号线交汇处; 南龙工业园,原为密集的厂房和居民区,2015—2017年拆迁,2018年开始建设施工 以屯洋岩体(花岗岩类)为主,岩溶塌陷地质灾害高易发区 中粒结构-斑状结构,块状构造
6 大围工业区 大围工业区; 中海凯骊酒店,26层高,位于在建的地铁16号线正西方向约200 m; 龙城公园西门的地区,2018年2月—2019年7月为新建厂房,占地面积约为3 300 m2 地质岩性以砂岩-碳质页岩为主 砂状结构-泥质结构,层状构造
7 红棉四路 位于在建的地铁14号线 以石灰岩-砂岩为主,间有碳质页岩,崩塌、滑坡地质灾害中易发区 生物碎屑结构-砂状结构-泥质结构,层状构造
8 腾龙工业区 腾龙工业区 以砂岩-凝灰质粉砂岩为主,崩塌、滑坡地质灾害高易发区 砂状结构-火山、沉积碎屑结构,层状构造
9 神力工业园 无明显沉降漏斗,沉降带分布较为广泛,分布有较多工业园,分别为联丰泰工业园、大力神工业园、神力工业园、卓越工业园、胜立工业园、亚洲工业园等 以吕山顶岩体、茜坑岩体为主,间有白芒岩体、砂岩-凝灰质粉砂岩 砂状结构-火山、沉积碎屑结构-中粒结构-斑状结构,块状构造
Tab.6  Location distribution, geology, lithology and structure of sedimentation funnel in each subsidence zone
[1] 刘飞. 基于GIS的地质灾害风险性评价——以龙岗区为例[D]. 长春: 吉林大学, 2020.
[1] Liu F. Risk assessment of geological hazards based on GIS:A case study of Longgang District[D]. Changchun: Jilin University, 2020.
[2] 徐娜. 深圳龙岗:主动作为勇于创新打造风险普查特色模式[J]. 中国减灾, 2021, 7(5):30-33.
[2] Xu N. Shenzhen Longgang: Take the initiative to create a risk census characteristic mode as the courage to innovate[J]. Disaster Reduction in China, 2021, 7(5):30-33.
[3] 葛大庆. 区域性地面沉降InSAR监测关键技术研究[D]. 北京: 中国地质大学(北京), 2013.
[3] Ge D Q. Research on the key techniques of SAR interferometry for regional land subsidence monitoring[D]. Beijing: China University of Geosciences (Beijing), 2013.
[4] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
[4] Zhu J J, Li Z W, Hu J. Research process and method of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
[5] 张永红, 刘冰, 吴宏安, 等. 雄安新区2012—2016年地面沉降InSAR监测[J]. 地球科学与环境学报, 2018, 40(5):152-162.
[5] Zhang Y H, Liu B, Wu H A, et al. Ground subsidence in Xiong’an New Area from 2012 to 2016 monitoring by InSAR techniques[J], Journal of Earch Sciences and Environment, 2018, 40(5):152-162.
[6] Lu Z, Zhang J X, Zhang Y H, et al. Monitoring and characterizing natural hazards with satellite InSAR imagery[J]. Geographic Information Sciences, 2010, 16(1):55-66.
[7] 葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7):4-11.
[7] Ge D Q, Dai K R, Guo Z C, et al. Early identification of serious geo-logical hazards with integrated remote sensing technnologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):4-11.
[8] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11):1651-1659.
[8] Xu Q. Understanding and consideration of related issues in early identificaiton of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1651-1659.
[9] 廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341.
[9] Liao M S, Dong J, Li M H, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341.
doi: 10.11834/jrs.20210162 url:
[10] 唐伟, 廖明生, 张丽, 等. 基于全球气象再分析资料的InSAR对流层延迟改正研究[J]. 地球物理学报, 2017, 60(2):527-540.
[10] Tang W, Liao M S, Zhang L, et al. Study on InSAR tropospheric correction using global atmospheric reanalysis products[J]. Chinese Journal of Geophysics, 2017, 60(2):527-540.
[11] 朱邦彦. InSAR对流层延迟校正及其在地表沉降监测中的应用研究[D]. 武汉: 武汉大学, 2017.
[11] Zhu B Y. Research on tropospheric delay correction of SAR interferometry and its application in land subsidence monitoring[D]. Wuhan: Wuhan University, 2017.
[12] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792 url:
[13] Casu F, Manzo M, Pepe A, et al. SBAS-DInSAR analysis of very extended areas:First results on a 60 000-km2 test site[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 438-442.
doi: 10.1109/LGRS.2008.916199 url:
[14] Baek W K, Jung H S. Precise three-dimensional deformation retrieval in large and complex deformation areas via integration of offset-based unwrapping and improved multiple-aperture SAR interferometry:Application to the 2016 Kumamoto earthquake[J]. Engineering, 2020, 6(8): 927-935
doi: 10.1016/j.eng.2020.06.012 url:
[15] Ding J, Zhao Q, Tang M, et al. On the characterization and forecasting of ground displacements of ocean-reclaimed lands[J]. Remote Sensing, 2020, 12(18):2971.
doi: 10.3390/rs12182971 url:
[16] 王国强, 陈仁琛. 基于InSAR技术的流域库岸地质灾害监测研究[J]. 中国农村水利水电, 2020, 458(12):212-216.
[16] Wang G Q, Chen R C. Reseatrch on the monitoring of geological hazards on the bank reservoir based on InSAR technology[J]. China Rural Water and Hydropower, 2020, 458(12):212-216.
[17] Ferretti A, Prati C. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
doi: 10.1109/36.868878 url:
[18] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
doi: 10.1109/36.898661 url:
[19] Kim J S, Kim D J, Kim S W, et al. Monitoring of urban land surface subsidence using PSInSAR[J]. Geosciences Journal, 2007, 11(1):59-73.
doi: 10.1007/BF02910381 url:
[20] Zhang L, Ding X L, Lu Z. Modeling PSInSAR time series without phase unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):547-556
doi: 10.1109/TGRS.2010.2052625 url:
[21] 侯安业, 张景发, 刘斌, 等. PS-InSAR与SBAS-InSAR监测地表沉降的比较研究[J]. 大地测量与地球动力学, 2012, 32(4):125-128.
[21] Hou A Y, Zhang J F, Liu B, et al. Comparative study on monitoring surface subsidence with PS-InSAR and SBAS-InSAR[J]. Journal of Geodesy and Geodynamics, 2012, 32(4):125-128.
[22] 深圳市规划和自然资源局. 深圳市地质灾害防治规划(2016—2025年)[EB/OL].(2018-07-13) [2022-05-08]
[22] Planning and Natural Resources Bureau of Shenzhen Municipality. Plan for prevention and control of geological hazards of Shenzhen Municipality (2016—2025)[EB/OL].(2018-07-13) [2022-05-08]
[23] 中国地质调查局. 地质云3.0[DB/OL].(2021-03-11) [2022-05-08]
[23] China Geological Survey. Geocloud 3.0[DB/OL].(2021-03-11) [2022-05-08]
[1] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[2] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[3] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[4] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[5] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[6] SHENG Dezhi, XING Qianguo, LIU Hailong, ZHENG Xiangyang. Remote sensing monitoring of the spatio-temporal changes in pond aquaculture based on mixed pixel decomposition[J]. Remote Sensing for Natural Resources, 2022, 34(4): 53-59.
[7] ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai[J]. Remote Sensing for Natural Resources, 2022, 34(3): 106-111.
[8] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[9] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[10] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[11] LUO Xuewei, XIANG Xiqiong, LYU Yadong. PS correction of InSAR time series deformation monitoring for a certain collapse in Longli County[J]. Remote Sensing for Natural Resources, 2022, 34(3): 82-87.
[12] YANG Xianhua, WEI Peng, LYU Jun, HAN Lei, SHI Haolin, LIU Zhi. Application of mining collapse recognition technology based on multi-source remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(2): 162-167.
[13] XU Zixing, JI Min, ZHANG Guo, CHEN Zhenwei. Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 20-29.
[14] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[15] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech